J. Semicond. > Volume 34 > Issue 6 > Article Number: 064005

Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units

Yongai Zhang , Tihang Lin , Xiangyao Zeng , Xiongtu Zhou , and Tailiang Guo ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper describes the fabrication of backlight units (BLUs) for a liquid crystal display (LCD) based on a novel planar-gate electron source with patterned carbon nanotubes (CNTs) formed by electrophoretic deposition. The electric field distributions and electron trajectories of this triode structure are simulated according to Ansys software. The device structure is optimized by supporting numerical simulation. The field emission results show that the emission current depends strongly on the cathode-gate gap and the gate voltage. Direct observation of the luminous images on a phosphor screen reveals that the electron beams undergo a noticeable expansion along the lateral direction with increasing gate voltage, which is in good agreement with the simulation results. The luminous efficiency and luminance of the fabricated device reaches 49.1 lm/W and 5500 cd/m2, respectively. All results indicate that the novel planar-gate electron source with patterned CNTs may lead to practical applications for an electron source based on a flat lamp for BLUs in LCD.

Key words: planar-gate triodepatterned CNTssimulationfield emissionBLUs

Abstract: This paper describes the fabrication of backlight units (BLUs) for a liquid crystal display (LCD) based on a novel planar-gate electron source with patterned carbon nanotubes (CNTs) formed by electrophoretic deposition. The electric field distributions and electron trajectories of this triode structure are simulated according to Ansys software. The device structure is optimized by supporting numerical simulation. The field emission results show that the emission current depends strongly on the cathode-gate gap and the gate voltage. Direct observation of the luminous images on a phosphor screen reveals that the electron beams undergo a noticeable expansion along the lateral direction with increasing gate voltage, which is in good agreement with the simulation results. The luminous efficiency and luminance of the fabricated device reaches 49.1 lm/W and 5500 cd/m2, respectively. All results indicate that the novel planar-gate electron source with patterned CNTs may lead to practical applications for an electron source based on a flat lamp for BLUs in LCD.

Key words: planar-gate triodepatterned CNTssimulationfield emissionBLUs



References:

[1]

De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science, 1995, 270(5239): 1179. doi: 10.1126/science.270.5239.1179

[2]

Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56. doi: 10.1038/354056a0

[3]

Xiao X J, Ye Y, Guo T L. Improved filed emission properties of carbon nanotubes by nickel electroplating and corrosion[J]. Journal of Semiconductors, 2012, 33(5): 053004. doi: 10.1088/1674-4926/33/5/053004

[4]

Zhang Y A, Lin J Y, Guo T L. Stable field emission from planar-gate electron source with CNTs by electrophoretic deposition[J]. Solid-State Electron, 2012, 67(1): 6. doi: 10.1016/j.sse.2011.08.005

[5]

Zheng L W, Hu L Q, Guo T L. Improved of the field emission properties carbon nanotubes by CNT/Fe3O4 composite electrophoretic deposition[J]. Journal of Semiconductors, 2012, 32(12): 0126001.

[6]

Choi W B, Chung D S, Kang J H. Fully sealed, high-brightness carbon-nanotube field-emission display[J]. Appl Phys Lett, 1999, 75(20): 3129. doi: 10.1063/1.125253

[7]

Guo P S, Chen T, Chen Y W. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters[J]. Solid-State Electron, 2008, 52(6): 877. doi: 10.1016/j.sse.2008.01.023

[8]

Lee S H, Ma C M, Teng C C. The effect of a magnetic field on the graphitization of carbon nanotubes and its application in field emission[J]. Diamond Relat Mater, 2012, 25: 111. doi: 10.1016/j.diamond.2012.02.019

[9]

Choi H Y, Chang W S, Kim H S. Acquisition of X-ray images by using a CNT cold emitter[J]. Phys Lett A, 2006, 357: 36. doi: 10.1016/j.physleta.2006.04.015

[10]

Silan J L, Niemann D L, Ribaya B P. Investigation of carbon nanotube field emitter geometry for increased current density[J]. Solid-State Electron, 2010, 54(12): 1543. doi: 10.1016/j.sse.2010.07.004

[11]

Jung Y J, Son G H, Park J H. Fabrication and properties of under-gated triode with CNT emitter for flat lamp[J]. Diamond Relat Mater, 2005, 14(11/12): 2112.

[12]

Lee J, Jung Y, Song J Y. High-performance field emission from a carbon nanotube carpet[J]. Carbon, 2012, 50(12): 3889.

[13]

Jang E S, Goak J C, Lee H S. Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters[J]. Appl Surf Sci, 2010, 256(22): 6838. doi: 10.1016/j.apsusc.2010.04.098

[14]

Choi Y C, Lee J W, Lee S K. The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit[J]. Nanotechnology, 2008, 19(23): 235306. doi: 10.1088/0957-4484/19/23/235306

[15]

Song M S, Park Y K, Yun J J. Distributed circuit model for cold cathode fluorescent lamps in back-light unit of liquid crystal display[J]. Display, 2010, 31(2): 104. doi: 10.1016/j.displa.2010.02.006

[16]

Huang W, Li J M, Yang L M. Local dimming algorithm and color gamut calibration for RGB LED backlight LCD display[J]. Optics & Laser Technology, 2011, 43(1): 214.

[17]

Kim Y C, Kang H S, Cho E. Building a backlight unit with lateral gate structure based on carbon nanotube field emitters[J]. Nanotechnology, 2009, 20(9): 095204. doi: 10.1088/0957-4484/20/9/095204

[18]

Wang F H, Lin T C, Tzeng S D. Field emission properties of carbon nanotube cathodes produced using composite plating[J]. Appl Surf Sci, 2010, 256(24): 7600. doi: 10.1016/j.apsusc.2010.06.010

[19]

Park J H, Son G H, Moon J S. Screen printed carbon nanotube field emitter array for lighting source application[J]. J Vac Sci Technol B, 2005, 23(2): 749. doi: 10.1116/1.1851535

[20]

Cao Y B, Lei W, Liu M. Ion bombardment in a normal-gate FED[J]. Appl Surf Sci, 2005, 243(1-4): 19. doi: 10.1016/j.apsusc.2004.06.097

[21]

Choi Y S, Kang J H, Kim H Y. A simple structure and fabrication of carbon-nanotube field emission display[J]. Appl Surf Sci, 2004, 221(1-4): 370. doi: 10.1016/S0169-4332(03)00935-8

[22]

Zhang Y A, Wu C X, Guo T L. An improved planar-gate triode with CNTs field emitters by electrophoretic deposition[J]. Appl Surf Sci, 2011, 257(8): 3259. doi: 10.1016/j.apsusc.2010.10.153

[23]

Lu W H, Song H, Jin Y X. Electrophoresis deposition and field emission characteristics of planar-gate-type electron source with carbon nanotubes[J]. Physica B, 2008, 403(10/11): 1796.

[24]

Su S H, Chiang W T, Lin C C. Multi-wall carbon nanotubes:purification, morphology and field emission performance[J]. Physica E, 2008, 40(7): 2322. doi: 10.1016/j.physe.2007.09.087

[25]

Fowler R H, Nordheim L W. Electron emission in intense electric field[J]. Proc R Soc Lond A, 1999, 173: 1928.

[1]

De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science, 1995, 270(5239): 1179. doi: 10.1126/science.270.5239.1179

[2]

Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56. doi: 10.1038/354056a0

[3]

Xiao X J, Ye Y, Guo T L. Improved filed emission properties of carbon nanotubes by nickel electroplating and corrosion[J]. Journal of Semiconductors, 2012, 33(5): 053004. doi: 10.1088/1674-4926/33/5/053004

[4]

Zhang Y A, Lin J Y, Guo T L. Stable field emission from planar-gate electron source with CNTs by electrophoretic deposition[J]. Solid-State Electron, 2012, 67(1): 6. doi: 10.1016/j.sse.2011.08.005

[5]

Zheng L W, Hu L Q, Guo T L. Improved of the field emission properties carbon nanotubes by CNT/Fe3O4 composite electrophoretic deposition[J]. Journal of Semiconductors, 2012, 32(12): 0126001.

[6]

Choi W B, Chung D S, Kang J H. Fully sealed, high-brightness carbon-nanotube field-emission display[J]. Appl Phys Lett, 1999, 75(20): 3129. doi: 10.1063/1.125253

[7]

Guo P S, Chen T, Chen Y W. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters[J]. Solid-State Electron, 2008, 52(6): 877. doi: 10.1016/j.sse.2008.01.023

[8]

Lee S H, Ma C M, Teng C C. The effect of a magnetic field on the graphitization of carbon nanotubes and its application in field emission[J]. Diamond Relat Mater, 2012, 25: 111. doi: 10.1016/j.diamond.2012.02.019

[9]

Choi H Y, Chang W S, Kim H S. Acquisition of X-ray images by using a CNT cold emitter[J]. Phys Lett A, 2006, 357: 36. doi: 10.1016/j.physleta.2006.04.015

[10]

Silan J L, Niemann D L, Ribaya B P. Investigation of carbon nanotube field emitter geometry for increased current density[J]. Solid-State Electron, 2010, 54(12): 1543. doi: 10.1016/j.sse.2010.07.004

[11]

Jung Y J, Son G H, Park J H. Fabrication and properties of under-gated triode with CNT emitter for flat lamp[J]. Diamond Relat Mater, 2005, 14(11/12): 2112.

[12]

Lee J, Jung Y, Song J Y. High-performance field emission from a carbon nanotube carpet[J]. Carbon, 2012, 50(12): 3889.

[13]

Jang E S, Goak J C, Lee H S. Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters[J]. Appl Surf Sci, 2010, 256(22): 6838. doi: 10.1016/j.apsusc.2010.04.098

[14]

Choi Y C, Lee J W, Lee S K. The high contrast ratio and fast response time of a liquid crystal display lit by a carbon nanotube field emission backlight unit[J]. Nanotechnology, 2008, 19(23): 235306. doi: 10.1088/0957-4484/19/23/235306

[15]

Song M S, Park Y K, Yun J J. Distributed circuit model for cold cathode fluorescent lamps in back-light unit of liquid crystal display[J]. Display, 2010, 31(2): 104. doi: 10.1016/j.displa.2010.02.006

[16]

Huang W, Li J M, Yang L M. Local dimming algorithm and color gamut calibration for RGB LED backlight LCD display[J]. Optics & Laser Technology, 2011, 43(1): 214.

[17]

Kim Y C, Kang H S, Cho E. Building a backlight unit with lateral gate structure based on carbon nanotube field emitters[J]. Nanotechnology, 2009, 20(9): 095204. doi: 10.1088/0957-4484/20/9/095204

[18]

Wang F H, Lin T C, Tzeng S D. Field emission properties of carbon nanotube cathodes produced using composite plating[J]. Appl Surf Sci, 2010, 256(24): 7600. doi: 10.1016/j.apsusc.2010.06.010

[19]

Park J H, Son G H, Moon J S. Screen printed carbon nanotube field emitter array for lighting source application[J]. J Vac Sci Technol B, 2005, 23(2): 749. doi: 10.1116/1.1851535

[20]

Cao Y B, Lei W, Liu M. Ion bombardment in a normal-gate FED[J]. Appl Surf Sci, 2005, 243(1-4): 19. doi: 10.1016/j.apsusc.2004.06.097

[21]

Choi Y S, Kang J H, Kim H Y. A simple structure and fabrication of carbon-nanotube field emission display[J]. Appl Surf Sci, 2004, 221(1-4): 370. doi: 10.1016/S0169-4332(03)00935-8

[22]

Zhang Y A, Wu C X, Guo T L. An improved planar-gate triode with CNTs field emitters by electrophoretic deposition[J]. Appl Surf Sci, 2011, 257(8): 3259. doi: 10.1016/j.apsusc.2010.10.153

[23]

Lu W H, Song H, Jin Y X. Electrophoresis deposition and field emission characteristics of planar-gate-type electron source with carbon nanotubes[J]. Physica B, 2008, 403(10/11): 1796.

[24]

Su S H, Chiang W T, Lin C C. Multi-wall carbon nanotubes:purification, morphology and field emission performance[J]. Physica E, 2008, 40(7): 2322. doi: 10.1016/j.physe.2007.09.087

[25]

Fowler R H, Nordheim L W. Electron emission in intense electric field[J]. Proc R Soc Lond A, 1999, 173: 1928.

[1]

Chang Zhongkun, Yu Ke, Zhang Yongsheng, Li Lijun, Ouyang Shixi, Zhang Qingjie, Wang Qingyan, Zhu Ziqiang. Patterned Growth and Field Emission Properties of ZnO Nanorods. J. Semicond., 2006, 27(S1): 84.

[2]

Yukui Li, Xiaoquan Li, Xinghui Liu, Wenke Lu, Fanguang Zeng. Fabrication research on the sandwich layered cathode electrode for a triode field emission display prototype. J. Semicond., 2013, 34(7): 074004. doi: 10.1088/1674-4926/34/7/074004

[3]

Duan Huigao, Xie Erqing, Ye Fan, Jiang Ran, Wang Xiaoming. Field Emission from Hafnium Oxynitride. J. Semicond., 2006, 27(S1): 208.

[4]

Ye Yun, Guo Tailiang, Jiang Yadong. Application of ZnO nanopillars and nanoflowers to field-emission luminescent tubes. J. Semicond., 2012, 33(4): 043003. doi: 10.1088/1674-4926/33/4/043003

[5]

Zhang Qifeng, Rong Yi, , Chen Xianxiang, , Zhang Gengmin, Zhang Zhaoxiang, Xue Zengquan. Fabrication of ZnO Nanowires by Vapor-Phase Deposition and Their Field Emission Properties. J. Semicond., 2006, 27(7): 1225.

[6]

Xiao Xiaojing, Ye Yun, Zheng Longwu, Guo Tailiang. Improved field emission properties of carbon nanotube cathodes by nickel electroplating and corrosion. J. Semicond., 2012, 33(5): 053004. doi: 10.1088/1674-4926/33/5/053004

[7]

Lin Hongfeng, , Xie Erqing, Zhang Jun, Yan Xiaoqin. Field Emission from Reaction Sputtering CN Films. J. Semicond., 2006, 27(S1): 211.

[8]

Duan Huigao, Xie Erqing, Ye Fan, Wang Xiaoming. Field Emission from Rare-Earth Silicides. J. Semicond., 2006, 27(S1): 202.

[9]

Qin Yuxiang, Hu Ming, Li Haiyan, Zhang Zhisheng, Zou Qiang. Preparation by a Low Temperature Method and the Field Emission Properties of Carbon Nanotube Cold Cathodes. J. Semicond., 2006, 27(8): 1417.

[10]

Zheng Longwu, Hu Liqin, Yang Fan, Guo Tailiang. Improvement of the field emission properties of carbon nanotubes by CNT/Fe3O4 composite electrophoretic deposition. J. Semicond., 2011, 32(12): 126001. doi: 10.1088/1674-4926/32/12/126001

[11]

Liqin Hu, Dian Zhang, Hailong Hu, Tailiang Guo. Field electron emission from structure-controlled one-dimensional CuO arrays synthesized by wet chemical process. J. Semicond., 2014, 35(7): 073003. doi: 10.1088/1674-4926/35/7/073003

[12]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[13]

Changyong Zheng, Wei Zhang, Tailong Xu, Yuehua Dai, Junning Chen. A compact model for single material double work function gate MOSFET. J. Semicond., 2013, 34(9): 094006. doi: 10.1088/1674-4926/34/9/094006

[14]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[15]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[16]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[17]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[18]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[19]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[20]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

Search

Advanced Search >>

GET CITATION

Y N G Zhang, T H Lin, X Y Zeng, X T Zhou, T L Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units[J]. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005.

Export: BibTex EndNote

Article Metrics

Article views: 463 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 09 October 2012 Manuscript revised: 14 December 2012 Online: Published: 01 June 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误