J Cao, Z Q Li, Q Li, L Chen, M Zhang, C J Wu, C Wang, Z G Wang. A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS[J]. J. Semicond., 2013, 34(8): 085010. doi: 10.1088/1674-4926/34/8/085010.
Jia Cao , , Zhiqun Li , Qin Li , Liang Chen , Meng Zhang , Chenjian Wu , Chong Wang and Zhigong Wang
Abstract: This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology. A topology of three optimized cascading stages is proposed to achieve a flat and wideband gain. Incorporating an input inductor and a gate-inductive gain-peaking inductor, the active shunt feedback technique is employed to extend the matching bandwidth and optimize the noise figure. The circuit achieves a flat gain of 30.5 dB with 3 dB bandwidth of 1-16 GHz and a minimum noise figure of 3.76 dB. Under 1.2 V supply voltage, the proposed IF amplifier consumes 42 mW DC power. The chip die including pads takes up 0.53 mm2, while the active area is only 0.022 mm2.
Key words: CMOS, IF amplifier, high gain, low noise amplifier, wideband, peaking technique, cascading amplifier
Abstract: This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology. A topology of three optimized cascading stages is proposed to achieve a flat and wideband gain. Incorporating an input inductor and a gate-inductive gain-peaking inductor, the active shunt feedback technique is employed to extend the matching bandwidth and optimize the noise figure. The circuit achieves a flat gain of 30.5 dB with 3 dB bandwidth of 1-16 GHz and a minimum noise figure of 3.76 dB. Under 1.2 V supply voltage, the proposed IF amplifier consumes 42 mW DC power. The chip die including pads takes up 0.53 mm2, while the active area is only 0.022 mm2.
Key words:
CMOS, IF amplifier, high gain, low noise amplifier, wideband, peaking technique, cascading amplifier
References:
[1] | |
[2] |
Lopez-Fernandez I, Daniel J, Puyol G. Development of cryogenic IF low-noise 4-12 GHz amplifiers for ALMA radio astronomy receivers[J]. IEEE MTT-S Int Microw Symp Dig, 2006: 1907. |
[3] |
Borremans J, Wambacq P, Soens C. Low-area active-feedback low-noise amplifier design in scaled digital CMOS[J]. IEEE J Solid-State Circuits, 2008, 43(11): 2022. |
[4] |
Okushima M, Borremans J, Linten D. A DC-to-22 GHz 8.4 mW compact dual-feedback wideband LNA in 90 nm digital CMOS[J]. IEEE Radio Freq Integr Circuits Symp, 2009: 295. |
[5] |
Chen W H, Liu G. A highly linear broadband CMOS LNA employing noise and distortion cancellation[J]. IEEE J Solid-State Circuits, 2008, 43(5): 1164. doi: 10.1109/JSSC.2008.920335 |
[6] |
Blaakmeer S C, Klumperink E A M. Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling[J]. IEEE J Solid-State Circuits, 2008, 43(6): 1341. doi: 10.1109/JSSC.2008.922736 |
[7] |
Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier[J]. IEEE J Solid-State Circuits, 1997, 32(5): 745. doi: 10.1109/4.568846 |
[8] |
Lee T H. The design of CMOS radio-frequency integrated circuits. 2nd ed[J]. Communications Engineer, 2004. |
[9] |
Chen H K, Lin Y S. Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a π -match input network[J]. IEEE Trans Microw Theory Tech, 2010, 58(8): 2092. doi: 10.1109/TMTT.2010.2052406 |
[10] |
Chen M, Lin J. A 0.1-20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS[J]. IEEE Microw Wireless Compon Lett, 2009, 19(5): 323. doi: 10.1109/LMWC.2009.2017608 |
[11] |
Chang P Y, Hsu S S H. A compact 0.1-14-GHz ultra-wideband low-noise amplifier in 0.13-μm CMOS[J]. Trans Microw Theory Tech, 2010, 58(10): 2075. |
[12] |
Sapone G, Palmisano G. A 3-10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication[J]. IEEE Trans Microw Theory Tech, 2011, 59(3): 678. doi: 10.1109/TMTT.2010.2090357 |
[13] |
Hsieh H H, Lu L H. A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS[J]. IEEE Trans Microw Theory Tech, 2009, 57(8): 1895. doi: 10.1109/TMTT.2009.2025418 |
[14] |
Lin Y S, Chen C Z, Yang H Y. Analysis anddesign of a CMOS UWB LNA with dual-RLC-branch wideband input matching network[J]. IEEE Trans Microw Theory Tech, 2010, 58(2): 287. doi: 10.1109/TMTT.2009.2037863 |
[15] |
El-Gabaly A M, Saavedra C E. Broadband low-noise amplifier with fast power switching for 3.1-10.6-GHz ultra-wideband applications[J]. IEEE Trans Microw Theory Tech, 2011, 59(12): 3146. doi: 10.1109/TMTT.2011.2169277 |
[16] |
Heydari P. Design and analysis of a performance-optimized CMOS UWB distributed LNA[J]. IEEE J Solid-State Circuits, 2007, 42(9): 1892. doi: 10.1109/JSSC.2007.903046 |
[17] |
He K C, Li M T, Li C M. Parallel-RC feedback low-noise amplifier for UWB applications[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2010, 57(8): 582. doi: 10.1109/TCSII.2010.2050943 |
[18] |
Lai Q T, Mao J F. A 0.5-11 GHz CMOS low noise amplifier using dual-channel shunt technique[J]. IEEE Microw Wireless Compon Lett, 2010, 19(5): 280. |
[19] |
Pepe D, Zito D. 22.7-dB gain-19.7-dBm ICP1dB UWB CMOS LNA[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2009, 56(9): 689. |
[20] |
Fang C, Law C L, Hwang J. A 3.1-10.6 GHz ultra-wideband low noise amplifier with 13-dB gain, 3.4-dB noise figure, and consumes only 12.9 mW of DC power[J]. IEEE Microw Wireless Compon Lett, 2007, 17(4): 295. doi: 10.1109/LMWC.2007.892984 |
[21] |
Chen K H, Lu J H, Chen B J. An ultra-wide-band 0.4-10-GHz LNA in 0.18-μm CMOS[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2007, 54(3): 217. doi: 10.1109/TCSII.2006.886880 |
[1] | |
[2] |
Lopez-Fernandez I, Daniel J, Puyol G. Development of cryogenic IF low-noise 4-12 GHz amplifiers for ALMA radio astronomy receivers[J]. IEEE MTT-S Int Microw Symp Dig, 2006: 1907. |
[3] |
Borremans J, Wambacq P, Soens C. Low-area active-feedback low-noise amplifier design in scaled digital CMOS[J]. IEEE J Solid-State Circuits, 2008, 43(11): 2022. |
[4] |
Okushima M, Borremans J, Linten D. A DC-to-22 GHz 8.4 mW compact dual-feedback wideband LNA in 90 nm digital CMOS[J]. IEEE Radio Freq Integr Circuits Symp, 2009: 295. |
[5] |
Chen W H, Liu G. A highly linear broadband CMOS LNA employing noise and distortion cancellation[J]. IEEE J Solid-State Circuits, 2008, 43(5): 1164. doi: 10.1109/JSSC.2008.920335 |
[6] |
Blaakmeer S C, Klumperink E A M. Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling[J]. IEEE J Solid-State Circuits, 2008, 43(6): 1341. doi: 10.1109/JSSC.2008.922736 |
[7] |
Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier[J]. IEEE J Solid-State Circuits, 1997, 32(5): 745. doi: 10.1109/4.568846 |
[8] |
Lee T H. The design of CMOS radio-frequency integrated circuits. 2nd ed[J]. Communications Engineer, 2004. |
[9] |
Chen H K, Lin Y S. Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a π -match input network[J]. IEEE Trans Microw Theory Tech, 2010, 58(8): 2092. doi: 10.1109/TMTT.2010.2052406 |
[10] |
Chen M, Lin J. A 0.1-20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS[J]. IEEE Microw Wireless Compon Lett, 2009, 19(5): 323. doi: 10.1109/LMWC.2009.2017608 |
[11] |
Chang P Y, Hsu S S H. A compact 0.1-14-GHz ultra-wideband low-noise amplifier in 0.13-μm CMOS[J]. Trans Microw Theory Tech, 2010, 58(10): 2075. |
[12] |
Sapone G, Palmisano G. A 3-10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication[J]. IEEE Trans Microw Theory Tech, 2011, 59(3): 678. doi: 10.1109/TMTT.2010.2090357 |
[13] |
Hsieh H H, Lu L H. A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS[J]. IEEE Trans Microw Theory Tech, 2009, 57(8): 1895. doi: 10.1109/TMTT.2009.2025418 |
[14] |
Lin Y S, Chen C Z, Yang H Y. Analysis anddesign of a CMOS UWB LNA with dual-RLC-branch wideband input matching network[J]. IEEE Trans Microw Theory Tech, 2010, 58(2): 287. doi: 10.1109/TMTT.2009.2037863 |
[15] |
El-Gabaly A M, Saavedra C E. Broadband low-noise amplifier with fast power switching for 3.1-10.6-GHz ultra-wideband applications[J]. IEEE Trans Microw Theory Tech, 2011, 59(12): 3146. doi: 10.1109/TMTT.2011.2169277 |
[16] |
Heydari P. Design and analysis of a performance-optimized CMOS UWB distributed LNA[J]. IEEE J Solid-State Circuits, 2007, 42(9): 1892. doi: 10.1109/JSSC.2007.903046 |
[17] |
He K C, Li M T, Li C M. Parallel-RC feedback low-noise amplifier for UWB applications[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2010, 57(8): 582. doi: 10.1109/TCSII.2010.2050943 |
[18] |
Lai Q T, Mao J F. A 0.5-11 GHz CMOS low noise amplifier using dual-channel shunt technique[J]. IEEE Microw Wireless Compon Lett, 2010, 19(5): 280. |
[19] |
Pepe D, Zito D. 22.7-dB gain-19.7-dBm ICP1dB UWB CMOS LNA[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2009, 56(9): 689. |
[20] |
Fang C, Law C L, Hwang J. A 3.1-10.6 GHz ultra-wideband low noise amplifier with 13-dB gain, 3.4-dB noise figure, and consumes only 12.9 mW of DC power[J]. IEEE Microw Wireless Compon Lett, 2007, 17(4): 295. doi: 10.1109/LMWC.2007.892984 |
[21] |
Chen K H, Lu J H, Chen B J. An ultra-wide-band 0.4-10-GHz LNA in 0.18-μm CMOS[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2007, 54(3): 217. doi: 10.1109/TCSII.2006.886880 |
J Cao, Z Q Li, Q Li, L Chen, M Zhang, C J Wu, C Wang, Z G Wang. A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS[J]. J. Semicond., 2013, 34(8): 085010. doi: 10.1088/1674-4926/34/8/085010.
Article views: 1500 Times PDF downloads: 5 Times Cited by: 0 Times
Manuscript received: 12 December 2012 Manuscript revised: 04 January 2013 Online: Published: 01 August 2013
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2