J. Semicond. > Volume 34 > Issue 8 > Article Number: 085010

A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS

Jia Cao , , Zhiqun Li , Qin Li , Liang Chen , Meng Zhang , Chenjian Wu , Chong Wang and Zhigong Wang

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology. A topology of three optimized cascading stages is proposed to achieve a flat and wideband gain. Incorporating an input inductor and a gate-inductive gain-peaking inductor, the active shunt feedback technique is employed to extend the matching bandwidth and optimize the noise figure. The circuit achieves a flat gain of 30.5 dB with 3 dB bandwidth of 1-16 GHz and a minimum noise figure of 3.76 dB. Under 1.2 V supply voltage, the proposed IF amplifier consumes 42 mW DC power. The chip die including pads takes up 0.53 mm2, while the active area is only 0.022 mm2.

Key words: CMOSIF amplifierhigh gain, low noise amplifierwidebandpeaking techniquecascading amplifier

Abstract: This paper presents a high-gain wideband low-noise IF amplifier aimed for the ALMA front end system using 90-nm LP CMOS technology. A topology of three optimized cascading stages is proposed to achieve a flat and wideband gain. Incorporating an input inductor and a gate-inductive gain-peaking inductor, the active shunt feedback technique is employed to extend the matching bandwidth and optimize the noise figure. The circuit achieves a flat gain of 30.5 dB with 3 dB bandwidth of 1-16 GHz and a minimum noise figure of 3.76 dB. Under 1.2 V supply voltage, the proposed IF amplifier consumes 42 mW DC power. The chip die including pads takes up 0.53 mm2, while the active area is only 0.022 mm2.

Key words: CMOSIF amplifierhigh gain, low noise amplifierwidebandpeaking techniquecascading amplifier



References:

[1]

http://www.almaobservatory.org/

[2]

Lopez-Fernandez I, Daniel J, Puyol G. Development of cryogenic IF low-noise 4-12 GHz amplifiers for ALMA radio astronomy receivers[J]. IEEE MTT-S Int Microw Symp Dig, 2006: 1907.

[3]

Borremans J, Wambacq P, Soens C. Low-area active-feedback low-noise amplifier design in scaled digital CMOS[J]. IEEE J Solid-State Circuits, 2008, 43(11): 2022.

[4]

Okushima M, Borremans J, Linten D. A DC-to-22 GHz 8.4 mW compact dual-feedback wideband LNA in 90 nm digital CMOS[J]. IEEE Radio Freq Integr Circuits Symp, 2009: 295.

[5]

Chen W H, Liu G. A highly linear broadband CMOS LNA employing noise and distortion cancellation[J]. IEEE J Solid-State Circuits, 2008, 43(5): 1164. doi: 10.1109/JSSC.2008.920335

[6]

Blaakmeer S C, Klumperink E A M. Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling[J]. IEEE J Solid-State Circuits, 2008, 43(6): 1341. doi: 10.1109/JSSC.2008.922736

[7]

Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier[J]. IEEE J Solid-State Circuits, 1997, 32(5): 745. doi: 10.1109/4.568846

[8]

Lee T H. The design of CMOS radio-frequency integrated circuits. 2nd ed[J]. Communications Engineer, 2004.

[9]

Chen H K, Lin Y S. Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a π -match input network[J]. IEEE Trans Microw Theory Tech, 2010, 58(8): 2092. doi: 10.1109/TMTT.2010.2052406

[10]

Chen M, Lin J. A 0.1-20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS[J]. IEEE Microw Wireless Compon Lett, 2009, 19(5): 323. doi: 10.1109/LMWC.2009.2017608

[11]

Chang P Y, Hsu S S H. A compact 0.1-14-GHz ultra-wideband low-noise amplifier in 0.13-μm CMOS[J]. Trans Microw Theory Tech, 2010, 58(10): 2075.

[12]

Sapone G, Palmisano G. A 3-10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication[J]. IEEE Trans Microw Theory Tech, 2011, 59(3): 678. doi: 10.1109/TMTT.2010.2090357

[13]

Hsieh H H, Lu L H. A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS[J]. IEEE Trans Microw Theory Tech, 2009, 57(8): 1895. doi: 10.1109/TMTT.2009.2025418

[14]

Lin Y S, Chen C Z, Yang H Y. Analysis anddesign of a CMOS UWB LNA with dual-RLC-branch wideband input matching network[J]. IEEE Trans Microw Theory Tech, 2010, 58(2): 287. doi: 10.1109/TMTT.2009.2037863

[15]

El-Gabaly A M, Saavedra C E. Broadband low-noise amplifier with fast power switching for 3.1-10.6-GHz ultra-wideband applications[J]. IEEE Trans Microw Theory Tech, 2011, 59(12): 3146. doi: 10.1109/TMTT.2011.2169277

[16]

Heydari P. Design and analysis of a performance-optimized CMOS UWB distributed LNA[J]. IEEE J Solid-State Circuits, 2007, 42(9): 1892. doi: 10.1109/JSSC.2007.903046

[17]

He K C, Li M T, Li C M. Parallel-RC feedback low-noise amplifier for UWB applications[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2010, 57(8): 582. doi: 10.1109/TCSII.2010.2050943

[18]

Lai Q T, Mao J F. A 0.5-11 GHz CMOS low noise amplifier using dual-channel shunt technique[J]. IEEE Microw Wireless Compon Lett, 2010, 19(5): 280.

[19]

Pepe D, Zito D. 22.7-dB gain-19.7-dBm ICP1dB UWB CMOS LNA[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2009, 56(9): 689.

[20]

Fang C, Law C L, Hwang J. A 3.1-10.6 GHz ultra-wideband low noise amplifier with 13-dB gain, 3.4-dB noise figure, and consumes only 12.9 mW of DC power[J]. IEEE Microw Wireless Compon Lett, 2007, 17(4): 295. doi: 10.1109/LMWC.2007.892984

[21]

Chen K H, Lu J H, Chen B J. An ultra-wide-band 0.4-10-GHz LNA in 0.18-μm CMOS[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2007, 54(3): 217. doi: 10.1109/TCSII.2006.886880

[1]

http://www.almaobservatory.org/

[2]

Lopez-Fernandez I, Daniel J, Puyol G. Development of cryogenic IF low-noise 4-12 GHz amplifiers for ALMA radio astronomy receivers[J]. IEEE MTT-S Int Microw Symp Dig, 2006: 1907.

[3]

Borremans J, Wambacq P, Soens C. Low-area active-feedback low-noise amplifier design in scaled digital CMOS[J]. IEEE J Solid-State Circuits, 2008, 43(11): 2022.

[4]

Okushima M, Borremans J, Linten D. A DC-to-22 GHz 8.4 mW compact dual-feedback wideband LNA in 90 nm digital CMOS[J]. IEEE Radio Freq Integr Circuits Symp, 2009: 295.

[5]

Chen W H, Liu G. A highly linear broadband CMOS LNA employing noise and distortion cancellation[J]. IEEE J Solid-State Circuits, 2008, 43(5): 1164. doi: 10.1109/JSSC.2008.920335

[6]

Blaakmeer S C, Klumperink E A M. Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling[J]. IEEE J Solid-State Circuits, 2008, 43(6): 1341. doi: 10.1109/JSSC.2008.922736

[7]

Shaeffer D K, Lee T H. A 1.5-V 1.5-GHz CMOS low noise amplifier[J]. IEEE J Solid-State Circuits, 1997, 32(5): 745. doi: 10.1109/4.568846

[8]

Lee T H. The design of CMOS radio-frequency integrated circuits. 2nd ed[J]. Communications Engineer, 2004.

[9]

Chen H K, Lin Y S. Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a π -match input network[J]. IEEE Trans Microw Theory Tech, 2010, 58(8): 2092. doi: 10.1109/TMTT.2010.2052406

[10]

Chen M, Lin J. A 0.1-20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS[J]. IEEE Microw Wireless Compon Lett, 2009, 19(5): 323. doi: 10.1109/LMWC.2009.2017608

[11]

Chang P Y, Hsu S S H. A compact 0.1-14-GHz ultra-wideband low-noise amplifier in 0.13-μm CMOS[J]. Trans Microw Theory Tech, 2010, 58(10): 2075.

[12]

Sapone G, Palmisano G. A 3-10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication[J]. IEEE Trans Microw Theory Tech, 2011, 59(3): 678. doi: 10.1109/TMTT.2010.2090357

[13]

Hsieh H H, Lu L H. A 40-GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS[J]. IEEE Trans Microw Theory Tech, 2009, 57(8): 1895. doi: 10.1109/TMTT.2009.2025418

[14]

Lin Y S, Chen C Z, Yang H Y. Analysis anddesign of a CMOS UWB LNA with dual-RLC-branch wideband input matching network[J]. IEEE Trans Microw Theory Tech, 2010, 58(2): 287. doi: 10.1109/TMTT.2009.2037863

[15]

El-Gabaly A M, Saavedra C E. Broadband low-noise amplifier with fast power switching for 3.1-10.6-GHz ultra-wideband applications[J]. IEEE Trans Microw Theory Tech, 2011, 59(12): 3146. doi: 10.1109/TMTT.2011.2169277

[16]

Heydari P. Design and analysis of a performance-optimized CMOS UWB distributed LNA[J]. IEEE J Solid-State Circuits, 2007, 42(9): 1892. doi: 10.1109/JSSC.2007.903046

[17]

He K C, Li M T, Li C M. Parallel-RC feedback low-noise amplifier for UWB applications[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2010, 57(8): 582. doi: 10.1109/TCSII.2010.2050943

[18]

Lai Q T, Mao J F. A 0.5-11 GHz CMOS low noise amplifier using dual-channel shunt technique[J]. IEEE Microw Wireless Compon Lett, 2010, 19(5): 280.

[19]

Pepe D, Zito D. 22.7-dB gain-19.7-dBm ICP1dB UWB CMOS LNA[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2009, 56(9): 689.

[20]

Fang C, Law C L, Hwang J. A 3.1-10.6 GHz ultra-wideband low noise amplifier with 13-dB gain, 3.4-dB noise figure, and consumes only 12.9 mW of DC power[J]. IEEE Microw Wireless Compon Lett, 2007, 17(4): 295. doi: 10.1109/LMWC.2007.892984

[21]

Chen K H, Lu J H, Chen B J. An ultra-wide-band 0.4-10-GHz LNA in 0.18-μm CMOS[J]. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2007, 54(3): 217. doi: 10.1109/TCSII.2006.886880

Search

Advanced Search >>

GET CITATION

J Cao, Z Q Li, Q Li, L Chen, M Zhang, C J Wu, C Wang, Z G Wang. A 30-dB 1-16-GHz low noise IF amplifier in 90-nm CMOS[J]. J. Semicond., 2013, 34(8): 085010. doi: 10.1088/1674-4926/34/8/085010.

Export: BibTex EndNote

Article Metrics

Article views: 1500 Times PDF downloads: 5 Times Cited by: 0 Times

History

Manuscript received: 12 December 2012 Manuscript revised: 04 January 2013 Online: Published: 01 August 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误