J. Semicond. > Volume 34 > Issue 8 > Article Number: 085017

A VHF RFPGA with adaptive phase-correction technique

Xu Cheng , , Guiliang Guo , Yuepeng Yan , Rongjiang Liu and Yu Jiang

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper presents a VHF (30-300 MHz) RF programmable gain amplifier (PGA) with an adaptive phase correction technique. The proposed technique effectively mitigates phase errors over the VHF band, and the RFPGA as a whole satisfies all the specifications of the China mobile multimedia broadcasting VHF band applications. The RFPGA is implemented with a TSMC 0.25 μm CMOS process. Measurement results reveal a gain range of around 61 dB, an ⅡP3 of -7 dBm at maximum gain, a power consumption of 10.2 mA at maximum gain, and a phase imbalance of less than 0.3 degrees.

Key words: programmable gain amplifiervery high frequencyadaptive phase correction techniquephase imbalancechina mobile multimedia broadcasting

Abstract: This paper presents a VHF (30-300 MHz) RF programmable gain amplifier (PGA) with an adaptive phase correction technique. The proposed technique effectively mitigates phase errors over the VHF band, and the RFPGA as a whole satisfies all the specifications of the China mobile multimedia broadcasting VHF band applications. The RFPGA is implemented with a TSMC 0.25 μm CMOS process. Measurement results reveal a gain range of around 61 dB, an ⅡP3 of -7 dBm at maximum gain, a power consumption of 10.2 mA at maximum gain, and a phase imbalance of less than 0.3 degrees.

Key words: programmable gain amplifiervery high frequencyadaptive phase correction techniquephase imbalancechina mobile multimedia broadcasting



References:

[1]

Chiang H H, Huang F C, Wang C S. A 90 nm CMOS V-band low-noise active balun with broadband phase-correction technique[J]. IEEE J Solid-State Circuits, 2011, 46: 2583. doi: 10.1109/JSSC.2011.2164135

[2]

Kim T W, Kim B. A 13-dB ⅡP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications[J]. IEEE J Solid-State Circuits, 2006, 41(4): 945. doi: 10.1109/JSSC.2006.870744

[3]

Kim T W, Kim B, Cho Y, et al. Low power 60 dB gain range with 0. 25 dB resolution CMOS RF programmable gain amplifier for dual-band DAB/T-DMB tuner IC. ASSCC, 2005

[4]

Kim T W, Kim B. A 78-dB gain range low power CMOS RF digitally programmable gain amplifier for mobile terrestrial D-TV tuner IC[J]. IEEE Microw Wireless Compon Lett, 2006, 16(4): 185. doi: 10.1109/LMWC.2006.872130

[5]

Sinderen J V, Seneschal F, Stikvoort E. A 48-860 MHz digital cable tuner IC with integrated RF and IF selectivity[J]. IEEE ISSCC Dig Tech Papers, 2003: 444.

[6]

Lou S, Luong H C. A wide-band CMOS variable-gain low-noise amplifier for cable TV tuners[J]. Proc IEEE Asia Solid-State Circuits Conf, 2005: 181.

[1]

Chiang H H, Huang F C, Wang C S. A 90 nm CMOS V-band low-noise active balun with broadband phase-correction technique[J]. IEEE J Solid-State Circuits, 2011, 46: 2583. doi: 10.1109/JSSC.2011.2164135

[2]

Kim T W, Kim B. A 13-dB ⅡP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications[J]. IEEE J Solid-State Circuits, 2006, 41(4): 945. doi: 10.1109/JSSC.2006.870744

[3]

Kim T W, Kim B, Cho Y, et al. Low power 60 dB gain range with 0. 25 dB resolution CMOS RF programmable gain amplifier for dual-band DAB/T-DMB tuner IC. ASSCC, 2005

[4]

Kim T W, Kim B. A 78-dB gain range low power CMOS RF digitally programmable gain amplifier for mobile terrestrial D-TV tuner IC[J]. IEEE Microw Wireless Compon Lett, 2006, 16(4): 185. doi: 10.1109/LMWC.2006.872130

[5]

Sinderen J V, Seneschal F, Stikvoort E. A 48-860 MHz digital cable tuner IC with integrated RF and IF selectivity[J]. IEEE ISSCC Dig Tech Papers, 2003: 444.

[6]

Lou S, Luong H C. A wide-band CMOS variable-gain low-noise amplifier for cable TV tuners[J]. Proc IEEE Asia Solid-State Circuits Conf, 2005: 181.

[1]

Yiqiang Wu, Zhigong Wang, Junliang Wang, Li Ma, Jian Xu, Lu Tang. Lower-power, high-linearity class-AB current-mode programmable gain amplifier. J. Semicond., 2014, 35(10): 105003. doi: 10.1088/1674-4926/35/10/105003

[2]

Yang Zhou, Wen Guangjun, Feng Xiao. A 2.5-V 56-mW baseband chain in a multistandard TV tuner for mobile and multimedia applications. J. Semicond., 2011, 32(3): 035003. doi: 10.1088/1674-4926/32/3/035003

[3]

Nan Lin, Fei Fang, Zhiliang Hong, Hao Fang. A 3.8 GHz programmable gain amplifier with a 0.1 dB gain step. J. Semicond., 2014, 35(3): 035004. doi: 10.1088/1674-4926/35/3/035004

[4]

Yun Gui, Xu Zhang, Yuan Wang, Ming Liu, Weihua Pei, Kai Liang, Suibiao Huang, Bin Li, Hongda Chen. A multi-channel fully differential programmable integrated circuit for neural recording application. J. Semicond., 2013, 34(10): 105009. doi: 10.1088/1674-4926/34/10/105009

[5]

Dongfang Pan, Feng Zhang, Lu Huang, Jinliang Li. A common-gate bootstrapped CMOS rectifier for VHF isolated DC-DC converter. J. Semicond., 2017, 38(5): 055002. doi: 10.1088/1674-4926/38/5/055002

[6]

Li Guofeng, Wu Nanjian. A low power flexible PGA for software defined radio systems. J. Semicond., 2012, 33(5): 055006. doi: 10.1088/1674-4926/33/5/055006

[7]

Hong Zhang, Jie Zhang, Mudan Zhang, Xue Li, Jun Cheng. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends. J. Semicond., 2015, 36(3): 035002. doi: 10.1088/1674-4926/36/3/035002

[8]

Jincheng Yang, Zhao Zhang, Nan Qi, Liyuan Liu, Jian Liu, Nanjian Wu. A fast-locking bang-bang phase-locked loop with adaptive loop gain controller. J. Semicond., 2018, 39(12): 125002. doi: 10.1088/1674-4926/39/12/125002

[9]

Pan Yaohua, Mei Niansong, Chen Hu, Huang Yumei, Hong Zhiliang. A 3 to 5 GHz low-phase-noise fractional-N frequency synthesizer with adaptive frequency calibration for GSM/PCS/DCS/WCDMA transceivers. J. Semicond., 2012, 33(1): 015001. doi: 10.1088/1674-4926/33/1/015001

[10]

Cao Shengguo, Yang Yuqing, Tan Xi, Yan Na, Min Hao. A 5 GHz CMOS frequency synthesizer with novel phase-switching prescaler and high-Q LC-VCO. J. Semicond., 2011, 32(8): 085006. doi: 10.1088/1674-4926/32/8/085006

[11]

Wang Xihu, Wu Longsheng, Liu Youbao. A Novel Operational Amplifier Phase Reversal Protection Circuit. J. Semicond., 2008, 29(9): 1832.

[12]

Xu Jiangtao, Li Binqiao, Zhao Shibin, Li Hongle, Yao Suying. A linear stepping PGA used in CMOS image sensors. J. Semicond., 2009, 30(2): 025003. doi: 10.1088/1674-4926/30/2/025003

[13]

Faen Liu, Zhigong Wang, Zhiqun Li, Qin Li, Sheng Chen. Design of improved CMOS phase-frequency detector and charge-pump for phase-locked loop. J. Semicond., 2014, 35(10): 105006. doi: 10.1088/1674-4926/35/10/105006

[14]

Yu Peng, Yan Jun, Shi Yin, Dai Fa Foster. A dual-band frequency synthesizer for CMMB application with low phase noise. J. Semicond., 2010, 31(9): 095001. doi: 10.1088/1674-4926/31/9/095001

[15]

Lei Xuemei, Wang Zhigong, Wang Keping, Li Wei. A novel wideband low phase noise 2 : 1 frequency divider. J. Semicond., 2010, 31(6): 065005. doi: 10.1088/1674-4926/31/6/065005

[16]

Sen Li, Jinguang Jiang, Xifeng Zhou, Jianghua Liu. A low phase noise and low spur PLL frequency synthesizer for GNSS receivers. J. Semicond., 2014, 35(1): 015004. doi: 10.1088/1674-4926/35/1/015004

[17]

Chen Zuotian, Wu Xuan, Tang Shoulong, Wu Jianhui. CMOS Implementation of a Wideband Low Phase Noise PLL Frequency Synthesizer. J. Semicond., 2006, 27(10): 1838.

[18]

Nan Chen, Shengxi Diao, Lu Huang, Xuefei Bai, Fujiang Lin. Design optimizations of phase noise, power consumption and frequency tuning for VCO. J. Semicond., 2013, 34(9): 095009. doi: 10.1088/1674-4926/34/9/095009

[19]

Chen Yongcong. Design Technique to Restrain Reference Spursin CMOS Phase Lock Loops. J. Semicond., 2006, 27(12): 2196.

[20]

Wang Chuang, Qian Rong, Sun Xiaowei. K-Band Monolithic Low Noise Amplifier with High Gain. J. Semicond., 2006, 27(7): 1285.

Search

Advanced Search >>

GET CITATION

X Cheng, G L Guo, Y P Yan, R J Liu, Y Jiang. A VHF RFPGA with adaptive phase-correction technique[J]. J. Semicond., 2013, 34(8): 085017. doi: 10.1088/1674-4926/34/8/085017.

Export: BibTex EndNote

Article Metrics

Article views: 538 Times PDF downloads: 5 Times Cited by: 0 Times

History

Manuscript received: 30 January 2013 Manuscript revised: 18 March 2013 Online: Published: 01 August 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误