SEMICONDUCTOR PHYSICS

Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode

P. Dalapati, N. B. Manik and A. N. Basu

+ Author Affiliations

 Corresponding author: N. B. Manik, Email:nb_manik@yahoo.co.in

PDF

Abstract: The influence of temperature on the intensity of light emitted by as well as the carrier life time τ of a standard AlGaAs based light emitting diode has been investigated in the temperature range from 345 to 136 K. The open-circuit voltage decay (OCVD) technique has been used for measured the carrier lifetime. Our experimental results reveal a 16% average increase in intensity and a 163.482-19.765 ns variation in carrier lifetime in the above temperature range. Further, theoretical and experimental analysis show that for negligible carrier density the intensity is inversely proportional to carrier lifetime for this sample.

Key words: LEDlow temperatureintensityideality factorcarrier lifetime



[1]
Lee Y J, Lee C J, Chen C H. Determination of junction temperature in InGaN and AlGaInP light-emitting diodes. IEEE J Quantum Electron, 2010, 46:1450 doi: 10.1109/JQE.2010.2050866
[2]
Manik N B, Basu A N, Mukherjee S C. Characterisation of the photodetector and light emitting diode at above liquid nitrogen temperature. Cryogenics, 2000, 40:341 doi: 10.1016/S0011-2275(00)00036-9
[3]
Guo Weling, Jia Xuejiao, Yin Fei, et al. Characteristics of high power LEDs at high and low temperature. Journal of Semiconductors, 2011, 32:4007
[4]
Vanderdoes Debye J A W, Blow L. Room temperature minority carrier life time and efficiency of p-type GaAs1-xPx. Journal of Luminescence, 1976, 14:101 https://es.scribd.com/document/269892788/Advanced-Biomedical-Engineering
[5]
Vitezslav B, Zdenek N. OCVD carrier life time measurements on an inhomogeneousdiode structure. SER Elec Energ, 2002, 15:33 http://technav.ieee.org/tag/8731/silicon-devices
[6]
Bhattacharya D K, Abhai M. Determination of recombination center position from the temperature dependence of minority car-rier lifetime in the base region of p-n junction solar cells. J Appl Phys, 1985, 57:2942 doi: 10.1063/1.335234
[7]
Mathur P C, Sharma R P, Saxena P, et al. Temperature dependence of minority carrier lifetime in single-crystal and polycrystalline Si solar cells. J Appl Phys, 1981, 52:3651 doi: 10.1063/1.329101
[8]
Mahan J E, Ekstedt T W, Frank R I. Measurement of minority carrier lifetime in solar cells from photo-induced open-circuit voltage decay. IEEE Trans Electron Devices, 1979, 26:733 doi: 10.1109/T-ED.1979.19487
[9]
Vishnoi A, Gopal R, Dwivedi R, et al. Measurement of minority carrier lifetime of solar cells using surface voltage and current transients. Solid-Stare Electron, 1990, 33:41l https://arxiv.org/pdf/1511.07887.pdf
[10]
Milan T, Jaroslav P, Andrej V, et al. Application of open circuit voltage decay to the characterization of epitaxial layer. Electrical Eng, 2004, 55:239
[11]
Sertap K A, Nese K, Sener O. The circuit point of view of the temperature dependent open circuit voltage decay of the solar cell. Solar Energy, 2009, 83:1446 doi: 10.1016/j.solener.2009.03.009
[12]
Vobecky J, Hazdra P, Zahlava V. Open circuit voltage decay lifetime of ion irradiated devices. Microelectron J, 1999, 30:513 doi: 10.1016/S0026-2692(98)00173-6
[13]
Pisarkiewicz T. Photodecay method in investigation of materials and photovoltaic structures. Opto-Electron Rev, 2004, 12:33 https://tw.arxiv.org/pdf/1706.02397
[14]
Salach-Bielecki R, Pisarkiewicz T, Stapinski T, et al. Influence of junction parameters on the open circuit voltage decay in solar cells. Opto-Electron Rev, 2004, 12:79
[15]
Tseng K J, Pan S. Modified charge-control equation for simulation of diode reverse recovery. Electron Lett, 1996, 32:404 doi: 10.1049/el:19960210
[16]
Ravinandan M, Koteswara R P, Rajagopal R V. Temperature dependence of current-voltage (Ⅰ-Ⅴ) characteristics of Pt/Au Schottky contacts on n-type GaN. J Optoelectron Adv Mater, 2008, 10:2787 http://wulixb.iphy.ac.cn/EN/volumn/volumn_522.shtml
[17]
Tunc T, Dokme I, Altindal S, et al. Temperature dependent current-voltage (Ⅰ-Ⅴ) characteristics of Au/n-Si (111) Schottky barrier diodes (SBDs) with polyvinyl alcohol (Co, Ni-doped) interfacial layer. Optoelectron Adv Mater, 2010, 4:947
[18]
Singh R, Arora S K, Renu T, et al. Temperature dependence of current-voltage characteristics of Au/n-GaAs epitaxial Schottky diode. Bull Mater Sci, 2000, 23:471 doi: 10.1007/BF02903886
[19]
Zhu Shiyang, Ru Guoping, Qu Xinping, et al. Double threshold behaviour of Ⅰ-Ⅴ characteristics of CoSi2/Si Schottky contacts. Chin Phys B, 2002, 11:156 doi: 10.1088/1009-1963/11/2/310
[20]
Acharya Y B, Vyavahare P D. Temperature characteristics of the device constant (n) of a light emitting diode. Solid-State Electron, 1999, 43:645 doi: 10.1016/S0038-1101(98)00291-3
[21]
Bergman J P, Hallin C, Janzen E. Temperature dependence of the minority carrier, lifetime in GaAs/AlGaAs double heterostructures. J Appl Phys, 1995, 78:4808 doi: 10.1063/1.360740
[22]
http: //www. ioffe. ru/SVA/NSM/Semicond/AlGaAs/bandstr. html
Fig. 1.  Schematic diagram of the experimental set up used for the OCVD LED measurement.

Fig. 2.  Schematic diagram of the experimental set up used for the LED intensity measurement.

Fig. 3.  Open-circuit voltage decay wave shape at different temperatures in the range 345–136 K.

Fig. 4.  Variation of ln$I$ with voltage (a) in the temperature range 345–249 K and (b) in the temperature range 236–136 K

Fig. 5.  Variation of ideality factor $n$ with temperature.

Fig. 6.  Variation of carrier lifetime with the reciprocal temperature (1000/$T$).

Fig. 7.  Variation of LED intensity with temperature.

Fig. 8.  Variation of carrier lifetime with intensity.

Table 1.   Variation of carrier lifetime $\tau$, ideality factor n with temperature.

[1]
Lee Y J, Lee C J, Chen C H. Determination of junction temperature in InGaN and AlGaInP light-emitting diodes. IEEE J Quantum Electron, 2010, 46:1450 doi: 10.1109/JQE.2010.2050866
[2]
Manik N B, Basu A N, Mukherjee S C. Characterisation of the photodetector and light emitting diode at above liquid nitrogen temperature. Cryogenics, 2000, 40:341 doi: 10.1016/S0011-2275(00)00036-9
[3]
Guo Weling, Jia Xuejiao, Yin Fei, et al. Characteristics of high power LEDs at high and low temperature. Journal of Semiconductors, 2011, 32:4007
[4]
Vanderdoes Debye J A W, Blow L. Room temperature minority carrier life time and efficiency of p-type GaAs1-xPx. Journal of Luminescence, 1976, 14:101 https://es.scribd.com/document/269892788/Advanced-Biomedical-Engineering
[5]
Vitezslav B, Zdenek N. OCVD carrier life time measurements on an inhomogeneousdiode structure. SER Elec Energ, 2002, 15:33 http://technav.ieee.org/tag/8731/silicon-devices
[6]
Bhattacharya D K, Abhai M. Determination of recombination center position from the temperature dependence of minority car-rier lifetime in the base region of p-n junction solar cells. J Appl Phys, 1985, 57:2942 doi: 10.1063/1.335234
[7]
Mathur P C, Sharma R P, Saxena P, et al. Temperature dependence of minority carrier lifetime in single-crystal and polycrystalline Si solar cells. J Appl Phys, 1981, 52:3651 doi: 10.1063/1.329101
[8]
Mahan J E, Ekstedt T W, Frank R I. Measurement of minority carrier lifetime in solar cells from photo-induced open-circuit voltage decay. IEEE Trans Electron Devices, 1979, 26:733 doi: 10.1109/T-ED.1979.19487
[9]
Vishnoi A, Gopal R, Dwivedi R, et al. Measurement of minority carrier lifetime of solar cells using surface voltage and current transients. Solid-Stare Electron, 1990, 33:41l https://arxiv.org/pdf/1511.07887.pdf
[10]
Milan T, Jaroslav P, Andrej V, et al. Application of open circuit voltage decay to the characterization of epitaxial layer. Electrical Eng, 2004, 55:239
[11]
Sertap K A, Nese K, Sener O. The circuit point of view of the temperature dependent open circuit voltage decay of the solar cell. Solar Energy, 2009, 83:1446 doi: 10.1016/j.solener.2009.03.009
[12]
Vobecky J, Hazdra P, Zahlava V. Open circuit voltage decay lifetime of ion irradiated devices. Microelectron J, 1999, 30:513 doi: 10.1016/S0026-2692(98)00173-6
[13]
Pisarkiewicz T. Photodecay method in investigation of materials and photovoltaic structures. Opto-Electron Rev, 2004, 12:33 https://tw.arxiv.org/pdf/1706.02397
[14]
Salach-Bielecki R, Pisarkiewicz T, Stapinski T, et al. Influence of junction parameters on the open circuit voltage decay in solar cells. Opto-Electron Rev, 2004, 12:79
[15]
Tseng K J, Pan S. Modified charge-control equation for simulation of diode reverse recovery. Electron Lett, 1996, 32:404 doi: 10.1049/el:19960210
[16]
Ravinandan M, Koteswara R P, Rajagopal R V. Temperature dependence of current-voltage (Ⅰ-Ⅴ) characteristics of Pt/Au Schottky contacts on n-type GaN. J Optoelectron Adv Mater, 2008, 10:2787 http://wulixb.iphy.ac.cn/EN/volumn/volumn_522.shtml
[17]
Tunc T, Dokme I, Altindal S, et al. Temperature dependent current-voltage (Ⅰ-Ⅴ) characteristics of Au/n-Si (111) Schottky barrier diodes (SBDs) with polyvinyl alcohol (Co, Ni-doped) interfacial layer. Optoelectron Adv Mater, 2010, 4:947
[18]
Singh R, Arora S K, Renu T, et al. Temperature dependence of current-voltage characteristics of Au/n-GaAs epitaxial Schottky diode. Bull Mater Sci, 2000, 23:471 doi: 10.1007/BF02903886
[19]
Zhu Shiyang, Ru Guoping, Qu Xinping, et al. Double threshold behaviour of Ⅰ-Ⅴ characteristics of CoSi2/Si Schottky contacts. Chin Phys B, 2002, 11:156 doi: 10.1088/1009-1963/11/2/310
[20]
Acharya Y B, Vyavahare P D. Temperature characteristics of the device constant (n) of a light emitting diode. Solid-State Electron, 1999, 43:645 doi: 10.1016/S0038-1101(98)00291-3
[21]
Bergman J P, Hallin C, Janzen E. Temperature dependence of the minority carrier, lifetime in GaAs/AlGaAs double heterostructures. J Appl Phys, 1995, 78:4808 doi: 10.1063/1.360740
[22]
http: //www. ioffe. ru/SVA/NSM/Semicond/AlGaAs/bandstr. html
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3662 Times PDF downloads: 63 Times Cited by: 0 Times

    History

    Received: 02 February 2013 Revised: Online: Published: 01 September 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      P. Dalapati, N. B. Manik, A. N. Basu. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode[J]. Journal of Semiconductors, 2013, 34(9): 092001. doi: 10.1088/1674-4926/34/9/092001 P. Dalapati, N. B. Manik, A. N. Basu. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode[J]. J. Semicond., 2013, 34(9): 092001. doi: 10.1088/1674-4926/34/9/092001.Export: BibTex EndNote
      Citation:
      P. Dalapati, N. B. Manik, A. N. Basu. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode[J]. Journal of Semiconductors, 2013, 34(9): 092001. doi: 10.1088/1674-4926/34/9/092001

      P. Dalapati, N. B. Manik, A. N. Basu. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode[J]. J. Semicond., 2013, 34(9): 092001. doi: 10.1088/1674-4926/34/9/092001.
      Export: BibTex EndNote

      Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode

      doi: 10.1088/1674-4926/34/9/092001
      More Information
      • Corresponding author: N. B. Manik, Email:nb_manik@yahoo.co.in
      • Received Date: 2013-02-02
      • Published Date: 2013-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return