J. Semicond. > Volume 34 > Issue 9 > Article Number: 094002

A surface-potential-based model for AlGaN/AlN/GaN HEMT

Jie Wang 1, 2, , Lingling Sun 2, , , Jun Liu 2, and Mingzhu Zhou 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A new surface-potential-based model for AlGaN/AlN/GaN high electron mobility transistor (HEMT) is proposed in this paper. Since the high polarization effects caused by AlN interlayer favorably influence the two dimensional electron gas (2DEG) and scattering mechanisms, we first add spontaneous and piezoelectric charge terms to the source equation of surface-potential, and a mobility model for AlGaN/AlN/GaN HEMT is rewritten. Compared with TCAD simulations, the DC characteristics of AlGaN/AlN/GaN HEMT are faithfully reproduced by the new model.

Key words: AlGaN/AlN/GaN HEMT2DEGsurface potentialpolarization effectsmobility

Abstract: A new surface-potential-based model for AlGaN/AlN/GaN high electron mobility transistor (HEMT) is proposed in this paper. Since the high polarization effects caused by AlN interlayer favorably influence the two dimensional electron gas (2DEG) and scattering mechanisms, we first add spontaneous and piezoelectric charge terms to the source equation of surface-potential, and a mobility model for AlGaN/AlN/GaN HEMT is rewritten. Compared with TCAD simulations, the DC characteristics of AlGaN/AlN/GaN HEMT are faithfully reproduced by the new model.

Key words: AlGaN/AlN/GaN HEMT2DEGsurface potentialpolarization effectsmobility



References:

[1]

Shen L, Heikman S, Moran B, et a1. AlGaN/AlN/GaN high power microwave HEMT[J]. IEEE Electron Device Lett, 2001, 22(10): 457. doi: 10.1109/55.954910

[2]

Smorchkova I P, Chen L, Mates T, et a1. AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular beam epitaxy[J]. J Appl Phys, 2001, 90(10): 5195.

[3]

Gao J. RF and microwave modeling and measurement techniques for field effect transistors. Raleigh, NC:SciTech Publishing, Inc, 2010

[4]

Dunleavy L, Baylis C, Curtice W. Modeling GaN:powerful but challenging[J]. IEEE Microw Mag, 2010, 11(6): 82. doi: 10.1109/MMM.2010.937735

[5]

Curtice W R. Nonlinear modeling of compound semiconductor HEMTs state of the art[J]. IEEE MTT-S International Microwave Symposium Digest, 2010: 1194.

[6]

Statz H, Newman P, Smith I W. GaAs FET device and circuit simulation in SPICE[J]. IEEE Trans Electron Devices, 1987, 34(2): 160. doi: 10.1109/T-ED.1987.22902

[7]

Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices[J]. Microwave Theory and Techniques, 1992, 40(12): 2258. doi: 10.1109/22.179888

[8]

Leckey J G. A scalable X-parameter model for GaAs and GaN FETs[J]. Microwave Integrated Circuits Conference (EuMIC), 2011: 13.

[9]

Sun G, Xu Y, Liang A. The study of nonlinear scattering functions and X-parameters[J]. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2010: 1086.

[10]

Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFETs[J]. IEEE Trans Electron Devices, 2011, 58(2): 448. doi: 10.1109/TED.2010.2089690

[11]

Liu J, Yu Z, Sun L. An accurate surface-potential-based large-signal model for HEMTs[J]. The International Conference on Simulation of Semiconductor Processes and Devices, Denver, Colorado, USA, 2012.

[12]

Xu Wenjie, Sun Lingling, Liu Jun. A continuous and analytical surface potential model for SOI LDMOS[J]. Chinese Journal of Semiconductors, 2007, 28(11): 1712.

[13]

Aziz M A, El-Abd A. Theoretical study of' the charge control in AlGaN/GaN HEMTs[J]. Proceedings of the Twenty Third National Radio Science Conference, 2006: 1.

[14]

Yu T H, Brennan K F. Theoretical study of a GaN/AlGaN high electron mobility transistor including a non-linear polarization model[J]. IEEE Trans Electron Devices, 2003, 50(2): 315. doi: 10.1109/TED.2002.808519

[15]

Wang J, Sun L, Liu J. A surface-potential-based compact core model for GaN HEMTs[J]. Journal of Microwaves, 2012, 6(1): 1.

[16]

Parish G, Umana-Membreno G A, Jolley S M. AlGaN/AlN/GaN high electron mobility transistors with improved carrier transport[J]. Conference on Optoelectronic and Microelectronic Materials and Devices, 2004: 29.

[17]

Gildenblat G, Li X, Wu W. PSP:an advanced surface-potential-based MOSFET model for circuit simulation[J]. IEEE Trans Electron Devices, 2006, 53(9): 1979. doi: 10.1109/TED.2005.881006

[18]

Schwierz F. An electron mobility model for wurtzite GaN[J]. Solid-State Electron, 2005, 49: 889. doi: 10.1016/j.sse.2005.03.006

[1]

Shen L, Heikman S, Moran B, et a1. AlGaN/AlN/GaN high power microwave HEMT[J]. IEEE Electron Device Lett, 2001, 22(10): 457. doi: 10.1109/55.954910

[2]

Smorchkova I P, Chen L, Mates T, et a1. AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular beam epitaxy[J]. J Appl Phys, 2001, 90(10): 5195.

[3]

Gao J. RF and microwave modeling and measurement techniques for field effect transistors. Raleigh, NC:SciTech Publishing, Inc, 2010

[4]

Dunleavy L, Baylis C, Curtice W. Modeling GaN:powerful but challenging[J]. IEEE Microw Mag, 2010, 11(6): 82. doi: 10.1109/MMM.2010.937735

[5]

Curtice W R. Nonlinear modeling of compound semiconductor HEMTs state of the art[J]. IEEE MTT-S International Microwave Symposium Digest, 2010: 1194.

[6]

Statz H, Newman P, Smith I W. GaAs FET device and circuit simulation in SPICE[J]. IEEE Trans Electron Devices, 1987, 34(2): 160. doi: 10.1109/T-ED.1987.22902

[7]

Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices[J]. Microwave Theory and Techniques, 1992, 40(12): 2258. doi: 10.1109/22.179888

[8]

Leckey J G. A scalable X-parameter model for GaAs and GaN FETs[J]. Microwave Integrated Circuits Conference (EuMIC), 2011: 13.

[9]

Sun G, Xu Y, Liang A. The study of nonlinear scattering functions and X-parameters[J]. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2010: 1086.

[10]

Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFETs[J]. IEEE Trans Electron Devices, 2011, 58(2): 448. doi: 10.1109/TED.2010.2089690

[11]

Liu J, Yu Z, Sun L. An accurate surface-potential-based large-signal model for HEMTs[J]. The International Conference on Simulation of Semiconductor Processes and Devices, Denver, Colorado, USA, 2012.

[12]

Xu Wenjie, Sun Lingling, Liu Jun. A continuous and analytical surface potential model for SOI LDMOS[J]. Chinese Journal of Semiconductors, 2007, 28(11): 1712.

[13]

Aziz M A, El-Abd A. Theoretical study of' the charge control in AlGaN/GaN HEMTs[J]. Proceedings of the Twenty Third National Radio Science Conference, 2006: 1.

[14]

Yu T H, Brennan K F. Theoretical study of a GaN/AlGaN high electron mobility transistor including a non-linear polarization model[J]. IEEE Trans Electron Devices, 2003, 50(2): 315. doi: 10.1109/TED.2002.808519

[15]

Wang J, Sun L, Liu J. A surface-potential-based compact core model for GaN HEMTs[J]. Journal of Microwaves, 2012, 6(1): 1.

[16]

Parish G, Umana-Membreno G A, Jolley S M. AlGaN/AlN/GaN high electron mobility transistors with improved carrier transport[J]. Conference on Optoelectronic and Microelectronic Materials and Devices, 2004: 29.

[17]

Gildenblat G, Li X, Wu W. PSP:an advanced surface-potential-based MOSFET model for circuit simulation[J]. IEEE Trans Electron Devices, 2006, 53(9): 1979. doi: 10.1109/TED.2005.881006

[18]

Schwierz F. An electron mobility model for wurtzite GaN[J]. Solid-State Electron, 2005, 49: 889. doi: 10.1016/j.sse.2005.03.006

[1]

Godwin Raj, Hemant Pardeshi, Sudhansu Kumar Pati, N Mohankumar, Chandan Kumar Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices. J. Semicond., 2013, 34(4): 044002. doi: 10.1088/1674-4926/34/4/044002

[2]

J. Panda, K. Jena, R. Swain, T. R. Lenka. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT. J. Semicond., 2016, 37(4): 044003. doi: 10.1088/1674-4926/37/4/044003

[3]

Devashish Pandey, T.R. Lenka. Model development for analyzing 2DEG sheet charge density and threshold voltage considering interface DOS for AlInN/GaN MOSHEMT. J. Semicond., 2014, 35(10): 104001. doi: 10.1088/1674-4926/35/10/104001

[4]

Zhou Jianjun, Jiang Ruolian, Ji Xiaoli, Xie Zili, Han Ping, Zhang Rong, Zheng Youdou. Influence of Interface Polarization Effects on Photoelectric Response of AlGaN/GaN Heterojunction pin Photodetectors. J. Semicond., 2007, 28(6): 947.

[5]

Zhao Jianzhi, Lin Zhaojun, Corrigan T D, Zhang Yu, Li Huijun, Wang Zhanguo. Influence of annealed ohmic contact metals on electron mobility of strained AlGaN/GaN heterostructures. J. Semicond., 2009, 30(10): 102003. doi: 10.1088/1674-4926/30/10/102003

[6]

Bi Yang, Wang Xiaoliang, Xiao Hongling, Wang Cuimei, Yang Cuibai, Peng Enchao, Lin Defeng, Feng Chun, Jiang Lijuan. Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure. J. Semicond., 2011, 32(8): 083003. doi: 10.1088/1674-4926/32/8/083003

[7]

Tao Chunmin, Tao Yaqi, Chen Cheng, Kong Yuechan, Chen Dunjun, Shen Bo, , Jiao Gang, Chen Tangsheng, Zhang Rong. High-Temperature Transport Properties of 2DEG in AlGaN/GaN Heterostructures. J. Semicond., 2006, 27(7): 1251.

[8]

Lu Shenghui, Du Jiangfeng, Luo Qian, Yu Qi, Zhou Wei, Xia Jianxin, Yang Mohua. Analytical charge control model for AlGaN/GaN MIS-HFETs includingan undepleted barrier layer. J. Semicond., 2010, 31(9): 094004. doi: 10.1088/1674-4926/31/9/094004

[9]

Wang Chong, Zhang Jinfeng, , Yang Yan, Hao Yue, Feng Qian. Temperature Characteristics of AlGaN/GaN HEMTs Using C-Vand TLM for Evaluating Temperatures. J. Semicond., 2006, 27(5): 864.

[10]

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

[11]

Kanjalochan Jena, Raghunandan Swain, T. R. Lenka. Impact of barrier thickness on gate capacitance——modeling and comparative analysis of GaN based MOSHEMTs. J. Semicond., 2015, 36(3): 034003. doi: 10.1088/1674-4926/36/3/034003

[12]

Ziliang Cai, Ming Li, Libo Fan. Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well. J. Semicond., 2014, 35(9): 092002. doi: 10.1088/1674-4926/35/9/092002

[13]

Lu Jingxue, Huang Fengyi, Wang Zhigong, Wu Wengang. Refinement of an Analytical Approximation of the Surface Potential in MOSFETs. J. Semicond., 2006, 27(7): 1155.

[14]

Xu Wenjie, Sun Lingling, Liu Jun, Li Wenjun, Zhang Haipeng, Wu Yanming, He Jia. A Continuous and Analytical Surface Potential Model for SOI LDMOS. J. Semicond., 2007, 28(11): 1712.

[15]

A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio. J. Semicond., 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

[16]

N Divya Bharathi, K Sivasankaran. Research progress and challenges of two dimensional MoS2 field effect transistors. J. Semicond., 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002

[17]

Bo Liu, Jiayun Yin, Yuanjie Lü, Shaobo Dun, Xiongwen Zhang, Zhihong Feng, Shujun Cai. Unstrained InAlN/GaN heterostructures grown on sapphire substrates by MOCVD. J. Semicond., 2014, 35(11): 113005. doi: 10.1088/1674-4926/35/11/113005

[18]

S. Theodore Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. Lakshmi Priya. Compact analytical model for single gate AlInSb/InSb high electron mobility transistors. J. Semicond., 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003

[19]

Santosh K. Gupta, Srimanta Baishya. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects. J. Semicond., 2013, 34(7): 074001. doi: 10.1088/1674-4926/34/7/074001

[20]

Li Xiyue, Deng Wanling, Huang Junkai. A physical surface-potential-based drain current model for polysilicon thin-film transistors. J. Semicond., 2012, 33(3): 034005. doi: 10.1088/1674-4926/33/3/034005

Search

Advanced Search >>

GET CITATION

J Wang, L L Sun, J Liu, M Z Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT[J]. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002.

Export: BibTex EndNote

Article Metrics

Article views: 1163 Times PDF downloads: 35 Times Cited by: 0 Times

History

Manuscript received: 04 February 2013 Manuscript revised: 09 April 2013 Online: Published: 01 September 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误