J. Semicond. > Volume 34 > Issue 9 > Article Number: 094006

A compact model for single material double work function gate MOSFET

Changyong Zheng 1, 2, , , Wei Zhang 1, , Tailong Xu 1, , Yuehua Dai 1, and Junning Chen 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: An analytical surface potential model for the single material double work function gate (SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes the effects of drain biases, gate oxide thickness, different combinations of S-gate and D-gate length and values of substrate doping concentration. More attention has been paid to seeking to explain the attributes of the SMDWG MOSFET, such as suppressing drain-induced barrier lowering (DIBL), accelerating carrier drift velocity and device speed. The model is verified by comparison to the simulated results using the device simulator MEDICI. The accuracy of the results obtained using our analytical model is verified using numerical simulations. The model not only offers the physical insight into device physics but also provides the basic designing guideline for the device.

Key words: analytical modelsurface potentialsingle material double work function gate (SMDWG) MOSFETsimulationDIBL

Abstract: An analytical surface potential model for the single material double work function gate (SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes the effects of drain biases, gate oxide thickness, different combinations of S-gate and D-gate length and values of substrate doping concentration. More attention has been paid to seeking to explain the attributes of the SMDWG MOSFET, such as suppressing drain-induced barrier lowering (DIBL), accelerating carrier drift velocity and device speed. The model is verified by comparison to the simulated results using the device simulator MEDICI. The accuracy of the results obtained using our analytical model is verified using numerical simulations. The model not only offers the physical insight into device physics but also provides the basic designing guideline for the device.

Key words: analytical modelsurface potentialsingle material double work function gate (SMDWG) MOSFETsimulationDIBL



References:

[1]

Dennard R H, Gaensslen F H, Yu H N. Design of ion-implanted MOSFET's with very small physical dimensions[J]. IEEE J Solid-State Circuits, 1974, SC-9: 256.

[2]

Cappy A, Carres B, Fanquembergues R. Comparative potential performance of Si, GaAs, GaInAs, InAs submicrometer-gate FET's[J]. IEEE Trans Electron Devices, 1980, ED-27: 2158.

[3]

Long W, Ou H, Kuo J M. Dual material gate (DMG) field-effect transistor[J]. IEEE Trans Electron Devices, 1999, 46: 865. doi: 10.1109/16.760391

[4]

Saxena M, Haldar S, Gupta M. Physics-based analytical modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot electron effect and carrier transport efficiency[J]. IEEE Trans Electron Devices, 2002, 49: 1928. doi: 10.1109/TED.2002.804701

[5]

Kumar M J, Chaudhry A. Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs[J]. IEEE Trans Electron Devices, 2004, 51: 569. doi: 10.1109/TED.2004.823803

[6]

Chiang T K. A new two-dimensional analytical subthreshold behavior model for short-channel tri-material gate-stack SOI MOSFET's[J]. Microelectron Reliab, 2009, 49: 113. doi: 10.1016/j.microrel.2008.11.005

[7]

Saxena R S, Kumar M J. Dual-material-gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs[J]. IEEE Trans Electron Devices, 2009, 56: 517. doi: 10.1109/TED.2008.2011723

[8]

Chiang T K. A new compact subthreshold behavior model for dual-material surrounding gate (DMSG) MOSFETs[J]. Solid-State Electron, 2009, 53: 490. doi: 10.1016/j.sse.2009.02.007

[9]

Sharma R K, Gupta R, Gupta M. Dual-material double-gate SOI n-MOSFET:gate misalignment analysis[J]. IEEE Trans Electron Devices, 2009, 56: 1284. doi: 10.1109/TED.2009.2019695

[10]

Saurabh S, Kumar M J. Novel attributes of a dual material gate nanoscale tunnel field-effect transistor[J]. IEEE Trans Electron Devices, 2011, 58: 404. doi: 10.1109/TED.2010.2093142

[11]

Li Zunchao, Jiang Yaolin, Wu Jianmin. Dual material gate SOI MOSFET with a single halo[J]. Chinese Journal of Semiconductors, 2007, 28: 327.

[12]

Luan Suzhen, Liu Hongxia, Jia Renxu. A two-dimensional subthreshold current model for dual material gate SOI nMOSFETs with asymmetric halo[J]. Journal of Semiconductors, 2008, 29: 746.

[13]

Li Jin, Liu Hongxia, Li Bin. Two-dimensional threshold voltage analytical model of DMG strained-silicon-on-insulator MOSFETs[J]. Journal of Semiconductors, 2010, 31: 084008. doi: 10.1088/1674-4926/31/8/084008

[14]

Li Jin, Liu Hongxia, Yuan Bo. A two-dimensional analytical model of fully depleted asymmetrical dual material gate double-gate strained-Si MOSFETs[J]. Journal of Semiconductors, 2011, 32: 044005. doi: 10.1088/1674-4926/32/4/044005

[15]

Cao Lei, Liu Hongxia, Wang Guanyu. Study of modeling for hetero-material gate fully depleted SSDOI MOSFET[J]. Acta Phys Sin, 2012, 61: 017105.

[16]

Polihchuk I, Ranade P, King T J. Dual work function metal gate CMOS technology using metal inter-diffusion[J]. IEEE Electron Device Lett, 2001, 22: 444. doi: 10.1109/55.944334

[17]

Young K K. Short-channel effect in fully depleted SOI MOSFETs[J]. IEEE Trans Electron Devices, 1989, 36: 399. doi: 10.1109/16.19942

[18]

Suzuki K. Short-channel MOSFET using a universal channel depletion width parameter[J]. IEEE Trans Electron Devices, 2000, 47: 1202. doi: 10.1109/16.842962

[1]

Dennard R H, Gaensslen F H, Yu H N. Design of ion-implanted MOSFET's with very small physical dimensions[J]. IEEE J Solid-State Circuits, 1974, SC-9: 256.

[2]

Cappy A, Carres B, Fanquembergues R. Comparative potential performance of Si, GaAs, GaInAs, InAs submicrometer-gate FET's[J]. IEEE Trans Electron Devices, 1980, ED-27: 2158.

[3]

Long W, Ou H, Kuo J M. Dual material gate (DMG) field-effect transistor[J]. IEEE Trans Electron Devices, 1999, 46: 865. doi: 10.1109/16.760391

[4]

Saxena M, Haldar S, Gupta M. Physics-based analytical modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot electron effect and carrier transport efficiency[J]. IEEE Trans Electron Devices, 2002, 49: 1928. doi: 10.1109/TED.2002.804701

[5]

Kumar M J, Chaudhry A. Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs[J]. IEEE Trans Electron Devices, 2004, 51: 569. doi: 10.1109/TED.2004.823803

[6]

Chiang T K. A new two-dimensional analytical subthreshold behavior model for short-channel tri-material gate-stack SOI MOSFET's[J]. Microelectron Reliab, 2009, 49: 113. doi: 10.1016/j.microrel.2008.11.005

[7]

Saxena R S, Kumar M J. Dual-material-gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs[J]. IEEE Trans Electron Devices, 2009, 56: 517. doi: 10.1109/TED.2008.2011723

[8]

Chiang T K. A new compact subthreshold behavior model for dual-material surrounding gate (DMSG) MOSFETs[J]. Solid-State Electron, 2009, 53: 490. doi: 10.1016/j.sse.2009.02.007

[9]

Sharma R K, Gupta R, Gupta M. Dual-material double-gate SOI n-MOSFET:gate misalignment analysis[J]. IEEE Trans Electron Devices, 2009, 56: 1284. doi: 10.1109/TED.2009.2019695

[10]

Saurabh S, Kumar M J. Novel attributes of a dual material gate nanoscale tunnel field-effect transistor[J]. IEEE Trans Electron Devices, 2011, 58: 404. doi: 10.1109/TED.2010.2093142

[11]

Li Zunchao, Jiang Yaolin, Wu Jianmin. Dual material gate SOI MOSFET with a single halo[J]. Chinese Journal of Semiconductors, 2007, 28: 327.

[12]

Luan Suzhen, Liu Hongxia, Jia Renxu. A two-dimensional subthreshold current model for dual material gate SOI nMOSFETs with asymmetric halo[J]. Journal of Semiconductors, 2008, 29: 746.

[13]

Li Jin, Liu Hongxia, Li Bin. Two-dimensional threshold voltage analytical model of DMG strained-silicon-on-insulator MOSFETs[J]. Journal of Semiconductors, 2010, 31: 084008. doi: 10.1088/1674-4926/31/8/084008

[14]

Li Jin, Liu Hongxia, Yuan Bo. A two-dimensional analytical model of fully depleted asymmetrical dual material gate double-gate strained-Si MOSFETs[J]. Journal of Semiconductors, 2011, 32: 044005. doi: 10.1088/1674-4926/32/4/044005

[15]

Cao Lei, Liu Hongxia, Wang Guanyu. Study of modeling for hetero-material gate fully depleted SSDOI MOSFET[J]. Acta Phys Sin, 2012, 61: 017105.

[16]

Polihchuk I, Ranade P, King T J. Dual work function metal gate CMOS technology using metal inter-diffusion[J]. IEEE Electron Device Lett, 2001, 22: 444. doi: 10.1109/55.944334

[17]

Young K K. Short-channel effect in fully depleted SOI MOSFETs[J]. IEEE Trans Electron Devices, 1989, 36: 399. doi: 10.1109/16.19942

[18]

Suzuki K. Short-channel MOSFET using a universal channel depletion width parameter[J]. IEEE Trans Electron Devices, 2000, 47: 1202. doi: 10.1109/16.842962

[1]

Xiaoyu Ma, Wanling Deng, Junkai Huang. Explicit solution of channel potential and drain current model in symmetric double-gate polysilicon TFTs. J. Semicond., 2014, 35(3): 032002. doi: 10.1088/1674-4926/35/3/032002

[2]

Xu Wenjie, Sun Lingling, Liu Jun, Li Wenjun, Zhang Haipeng, Wu Yanming, He Jia. A Continuous and Analytical Surface Potential Model for SOI LDMOS. J. Semicond., 2007, 28(11): 1712.

[3]

Lu Jingxue, Huang Fengyi, Wang Zhigong, Wu Wengang. Refinement of an Analytical Approximation of the Surface Potential in MOSFETs. J. Semicond., 2006, 27(7): 1155.

[4]

T. S. Arun Samuel, N. B. Balamurugan. Analytical modeling and simulation of germanium single gate silicon on insulator TFET. J. Semicond., 2014, 35(3): 034002. doi: 10.1088/1674-4926/35/3/034002

[5]

D.K. Panda, T.R. Lenka. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J. Semicond., 2017, 38(6): 064002. doi: 10.1088/1674-4926/38/6/064002

[6]

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[7]

Huifang Xu. Two dimensional analytical model for a negative capacitance double gate tunnel field effect transistor with ferroelectric gate dielectric. J. Semicond., 2018, 39(10): 104004. doi: 10.1088/1674-4926/39/10/104004

[8]

Li Xiyue, Deng Wanling, Huang Junkai. A physical surface-potential-based drain current model for polysilicon thin-film transistors. J. Semicond., 2012, 33(3): 034005. doi: 10.1088/1674-4926/33/3/034005

[9]

Huifang Xu, Yuehua Dai. Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers. J. Semicond., 2017, 38(2): 024004. doi: 10.1088/1674-4926/38/2/024004

[10]

T. Bendib, F. Djeffal, D. Arar. A compact charge-based model to study the nanoscale undoped double gate MOSFETs for nanoelectronic circuit design using genetic algorithms. J. Semicond., 2013, 34(4): 044003. doi: 10.1088/1674-4926/34/4/044003

[11]

C. Usha, Dr. P. Vimala. A compact two-dimensional analytical model of the electrical characteristics of a triple-material double-gate tunneling FET structure. J. Semicond., 2019, 40(9): -1.

[12]

Huifang Xu, Yuehua Dai, Ning Li, Jianbin Xu. A 2-D semi-analytical model of double-gate tunnel field-effect transistor. J. Semicond., 2015, 36(5): 054002. doi: 10.1088/1674-4926/36/5/054002

[13]

S. Theodore Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. Lakshmi Priya. Compact analytical model for single gate AlInSb/InSb high electron mobility transistors. J. Semicond., 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003

[14]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[15]

Deng Wanling, Zheng Xueren, Chen Rongsheng. A New Poly-Si TFTs DC Model for Device Characterization and Circuit Simulation. J. Semicond., 2007, 28(12): 1916.

[16]

A. Singh, D. Kapoor, R. Sharma. Performance analysis of SiGe double-gate N-MOSFET. J. Semicond., 2017, 38(4): 044003. doi: 10.1088/1674-4926/38/4/044003

[17]

Li Zunchao, Jiang Yaolin, Wu Jianmin. Dual Material Gate SOI MOSFET with a Single Halo. J. Semicond., 2007, 28(3): 327.

[18]

A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio. J. Semicond., 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

[19]

Li Xiaojian, Tan Yaohua, Tian Lilin. An Analytical Model of Electron Mobility for Strained-Si Channel nMOSFETs. J. Semicond., 2008, 29(5): 863.

[20]

Haimeng Huang, Xingbi Chen. An analytical model of the electric field distributions of buried superjunction devices. J. Semicond., 2013, 34(6): 064006. doi: 10.1088/1674-4926/34/6/064006

Search

Advanced Search >>

GET CITATION

C Y Zheng, W Zhang, T L Xu, Y H Dai, J N Chen. A compact model for single material double work function gate MOSFET[J]. J. Semicond., 2013, 34(9): 094006. doi: 10.1088/1674-4926/34/9/094006.

Export: BibTex EndNote

Article Metrics

Article views: 518 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 04 February 2013 Manuscript revised: 07 March 2013 Online: Published: 01 September 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误