J. Semicond. > Volume 35 > Issue 1 > Article Number: 013002

Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations

Zongyan Zhao , , Dacheng Zhou and Juan Yi

+ Author Affiliations + Find other works by these authors

PDF

Abstract: 3d transition metals doped CuGaS2 are considered as possible absorbing material candidates for intermediated band thin film solar cells. The electronic structure and optical properties of 3d transition metals doped CuGaS2 are investigated by using density functional theory calculations with the GGA + U method in the present work. The doping with 3d transition metals does not obviously change the crystal structure, band gap, and optical absorption edge of the CuGaS2 host. However, in the case of CuGa1-xTMxS2 (TM=Ti, V, Cr, Fe, and Ni), there is at least one distinct isolated impurity energy level in the band gap, and the optical absorption is enhanced in the ultraviolet-light region. Therefore, these materials are ideal absorber material candidates for intermediated band thin film solar cells. The calculated results are very well consistent with experimental observations, and could better explain them.

Key words: chalcogenidesDFT calculationsdefectselectrical structureoptical properties

Abstract: 3d transition metals doped CuGaS2 are considered as possible absorbing material candidates for intermediated band thin film solar cells. The electronic structure and optical properties of 3d transition metals doped CuGaS2 are investigated by using density functional theory calculations with the GGA + U method in the present work. The doping with 3d transition metals does not obviously change the crystal structure, band gap, and optical absorption edge of the CuGaS2 host. However, in the case of CuGa1-xTMxS2 (TM=Ti, V, Cr, Fe, and Ni), there is at least one distinct isolated impurity energy level in the band gap, and the optical absorption is enhanced in the ultraviolet-light region. Therefore, these materials are ideal absorber material candidates for intermediated band thin film solar cells. The calculated results are very well consistent with experimental observations, and could better explain them.

Key words: chalcogenidesDFT calculationsdefectselectrical structureoptical properties



References:

[1]

Soren D, Ib C. Solar-fuel generation:towards practical implementation[J]. Nature Mater, 2012, 11(2): 100. doi: 10.1038/nmat3233

[2]

Blankenship R E, Tiede D M, Barber J. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031): 805. doi: 10.1126/science.1200165

[3]

Morton O. Solar energy:a new day dawning?:silicon valley sunrise[J]. Nature, 2006, 443(7107): 19. doi: 10.1038/443019a

[4]

Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. J Appl Phys, 1954, 25(5): 676. doi: 10.1063/1.1721711

[5]

Conibeer G. Third-generation photovoltaics[J]. Mater Today, 2007, 10(11): 42. doi: 10.1016/S1369-7021(07)70278-X

[6]

Green M A. Third generation photovoltaics:advanced solar energy conversion. Berlin Heidelberg:Springer-Verlag, 2003

[7]

Luque A, Martí A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J]. Physl Rev Lett, 1997, 78(26): 5014. doi: 10.1103/PhysRevLett.78.5014

[8]

López N, Reichertz L A, Yu K M. Engineering the electronic band structure for multiband solar cells[J]. Phys Rev Lett, 2011, 106(2): 028701. doi: 10.1103/PhysRevLett.106.028701

[9]

Palacios P, Sanchez K, Wahnon P. Characterization by ab initio calculations of an intermediate band material based on chalcopyrite semiconductors substituted by several transition metals[J]. J Solar Energy Eng, 2007, 129(3): 314. doi: 10.1115/1.2735345

[10]

Marti A, Marron D F, Luque A. Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials[J]. J Appl Phys, 2008, 103(7): 073706. doi: 10.1063/1.2901213

[11]

Marsen B, Klemz S, Unold T. Investigation of the sub-bandgap photoresponse in CuGaS2:Fe for intermediate band solar cells[J]. Progress in Photovoltaics:Research and Applications, 2012, 20(6): 625. doi: 10.1002/pip.1197

[12]

Tablero C, Fuertes M D. Analysis of the electronic structure of modified CuGaS2 with selected substitutional impurities:prospects for intermediate-band thin-film solar cells based on Cu-containing chalcopyrites[J]. J Phys Chem C, 2010, 114(6): 2756. doi: 10.1021/jp909895q

[13]

Teranishi T, Sato K, Kondo K. Optical properties of a magnetic semiconductor:chalcopyrite CuFeS2:I. absorption spectra of CuFeS2 and Fe-doped CuAlS2 and CuGaS2[J]. J Phys Soc Japan, 1974, 36: 1618. doi: 10.1143/JPSJ.36.1618

[14]

Von Bardeleben H J, Goltzene A, Meyer B. Effects of iron content and stoichiometry on the coloration of CuGaS2[J]. Phys Status Solidi A, 1978, 48(2).

[15]

Sato K, Teranishi T. Effect of delocalization of d-electrons on the optical reflectivity spectra of CuGa1-xFexS2 and CuAl1-xFexS2 systems[J]. Jpn J Appl Phys, 1980, 19.

[16]

Marsen B, Klemz S, Landi G. Phases in copper-gallium-metal-sulfide films (metal=titanium, iron, or tin)[J]. Thin Solid Films, 2011, 519(21): 7284. doi: 10.1016/j.tsf.2011.01.137

[17]

Seminóvski Y, Palacios P, Wahnón P. Intermediate band position modulated by Zn addition in Ti doped CuGaS2[J]. Thin Solid Films, 2011, 519(21): 7517. doi: 10.1016/j.tsf.2010.12.136

[18]

Seminóvski Y, Palacios P, Conesa J C. Thermodynamics of zinc insertion in CuGaS2:Ti, used as a modulator agent in an intermediate-band photovoltaic material[J]. Computational and Theoretical Chemistry, 2011, 975(1-3): 134. doi: 10.1016/j.comptc.2010.12.018

[19]

Palacios P, Aguilera I, Wahnon P. Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials[J]. J Phys Chem C, 2008, 112(25): 9525. doi: 10.1021/jp0774185

[20]

Palacios P, Aguilera I, Wahnón P. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials[J]. Thin Solid Films, 2008, 516(20): 7070. doi: 10.1016/j.tsf.2007.12.062

[21]

Aguilera I, Palacios P, Wahnón P. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles[J]. Thin Solid Films, 2008, 516(20): 7055. doi: 10.1016/j.tsf.2007.12.085

[22]

Palacios P, Sánchez K, Conesa J C. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds[J]. Thin Solid Films, 2007, 515(15): 6280. doi: 10.1016/j.tsf.2006.12.170

[23]

Zhao Y J, Zunger A. Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2[J]. Physl Rev B, 2004, 69(10): 104422. doi: 10.1103/PhysRevB.69.104422

[24]

Zhao Y J, Zunger A. Site preference for Mn substitution in spintronic CuMX2VI chalcopyrite semiconductors[J]. Phys Rev B, 2004, 69(7): 075208. doi: 10.1103/PhysRevB.69.075208

[25]

Picozzi S, Zhao Y J, Freeman A J. Mn-doped CuGaS2 chalcopyrites:an ab initio study of ferromagnetic semiconductors[J]. Phys Rev B, 2002, 66(20): 205206. doi: 10.1103/PhysRevB.66.205206

[26]

Kaufmann U. Electronic structure of Ni+ in IB-Ⅲ-VI2 chalcopyrite semiconductors[J]. Physl Rev B, 1975, 11(7): 2478. doi: 10.1103/PhysRevB.11.2478

[27]

Lin Guijiang, Wu Jyhchiarng, Huang Meichun. Theoretical modeling of the interface recombination effect on the performance of Ⅲ-V tandem solar cells[J]. Journal of Semiconductors, 2010, 31(8): 082004. doi: 10.1088/1674-4926/31/8/082004

[28]

Gao Pan, Zhang Xuejun, Zhou Wenfang. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium[J]. Journal of Semiconductors, 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001

[29]

Li Lezhong, Yang Weiqing, Ding Yingchun. First principle study of the electronic structure of hafnium-doped anatase TiO2[J]. Journal of Semiconductors, 2012, 33(1): 012002. doi: 10.1088/1674-4926/33/1/012002

[30]

Zheng Wenli, Li Tinghui. Compositional dependence of Raman frequencies in SixGe1-x alloys[J]. Journal of Semiconductors, 2012, 33(11): 112001. doi: 10.1088/1674-4926/33/11/112001

[31]

Si Panpan, Su Xiyu, Hou Qinying. First-principles calculation of the electronic band of ZnO doped with C[J]. Journal of Semiconductors, 2009, 30(5): 052001. doi: 10.1088/1674-4926/30/5/052001

[32]

Shih B Cg, Zhang Y, Zhang W. Screened Coulomb interaction of localized electrons in solids from first principles[J]. Physl Rev B, 2012, 85(4): 045132. doi: 10.1103/PhysRevB.85.045132

[33]

Xu B, Li X, Qin Z. Electronic and optical properties of CuGaS2:first-principles calculations[J]. Physica B:Condensed Matter, 2011, 406(4): 946. doi: 10.1016/j.physb.2010.12.034

[34]

Romero A H, Cardona M, Kremer R K. Electronic and phononic properties of the chalcopyrite CuGaS2[J]. Phys Rev B, 2011, 83(19): 195208. doi: 10.1103/PhysRevB.83.195208

[35]

Aguilera I, Vidal J, Wahnón P. First-principles study of the band structure and optical absorption of CuGaS2[J]. Phys Rev B, 2011, 84(8): 085145. doi: 10.1103/PhysRevB.84.085145

[36]

Bailey C L, Liborio L, Mallia G. Defect physics of CuGaS2[J]. Physl Rev B, 2010, 81(20): 205214. doi: 10.1103/PhysRevB.81.205214

[37]

Clark S J, Segall M D, Pickard C J. First principles methods using CASTEP[J]. Zeitschrift Fur Kristallographie, 2005, 220(5/6): 567.

[38]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. doi: 10.1103/PhysRevLett.77.3865

[39]

Cococcioni M, de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method[J]. Phys Rev B, 2005, 71(3): 035105. doi: 10.1103/PhysRevB.71.035105

[40]

Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators:Hubbard U instead of Stoner I[J]. Phys Rev B, 1991, 44(3): 943. doi: 10.1103/PhysRevB.44.943

[41]

Pfrommer B G, Câté M, Louie S G. Relaxation of crystals with the quasi-Newton method[J]. Journal of Computational Physics, 1997, 131(1): 233. doi: 10.1006/jcph.1996.5612

[42]

Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities:applications to Ⅲ-nitrides[J]. J Appl Phys, 2004, 95(8): 3851. doi: 10.1063/1.1682673

[43]

Tell B, Shay J L, Kasper H M. Electrical properties, optical properties, and band structure of CuGaS2 and CuInS2[J]. Phys Rev B, 1971, 4(8): 2463. doi: 10.1103/PhysRevB.4.2463

[44]

Bellabarba C, González J, Rincón C. Optical-absorption spectrum near the exciton band edge in CuGaS2 at 5 K[J]. Phys Rev B, 1996, 53(12): 7792. doi: 10.1103/PhysRevB.53.7792

[45]

González J, Moya E, Chervin J C. Anharmonic effects in light scattering due to optical phonons in CuGaS2[J]. Phys Rev B, 1996, 54(7): 4707. doi: 10.1103/PhysRevB.54.4707

[1]

Soren D, Ib C. Solar-fuel generation:towards practical implementation[J]. Nature Mater, 2012, 11(2): 100. doi: 10.1038/nmat3233

[2]

Blankenship R E, Tiede D M, Barber J. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031): 805. doi: 10.1126/science.1200165

[3]

Morton O. Solar energy:a new day dawning?:silicon valley sunrise[J]. Nature, 2006, 443(7107): 19. doi: 10.1038/443019a

[4]

Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. J Appl Phys, 1954, 25(5): 676. doi: 10.1063/1.1721711

[5]

Conibeer G. Third-generation photovoltaics[J]. Mater Today, 2007, 10(11): 42. doi: 10.1016/S1369-7021(07)70278-X

[6]

Green M A. Third generation photovoltaics:advanced solar energy conversion. Berlin Heidelberg:Springer-Verlag, 2003

[7]

Luque A, Martí A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J]. Physl Rev Lett, 1997, 78(26): 5014. doi: 10.1103/PhysRevLett.78.5014

[8]

López N, Reichertz L A, Yu K M. Engineering the electronic band structure for multiband solar cells[J]. Phys Rev Lett, 2011, 106(2): 028701. doi: 10.1103/PhysRevLett.106.028701

[9]

Palacios P, Sanchez K, Wahnon P. Characterization by ab initio calculations of an intermediate band material based on chalcopyrite semiconductors substituted by several transition metals[J]. J Solar Energy Eng, 2007, 129(3): 314. doi: 10.1115/1.2735345

[10]

Marti A, Marron D F, Luque A. Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials[J]. J Appl Phys, 2008, 103(7): 073706. doi: 10.1063/1.2901213

[11]

Marsen B, Klemz S, Unold T. Investigation of the sub-bandgap photoresponse in CuGaS2:Fe for intermediate band solar cells[J]. Progress in Photovoltaics:Research and Applications, 2012, 20(6): 625. doi: 10.1002/pip.1197

[12]

Tablero C, Fuertes M D. Analysis of the electronic structure of modified CuGaS2 with selected substitutional impurities:prospects for intermediate-band thin-film solar cells based on Cu-containing chalcopyrites[J]. J Phys Chem C, 2010, 114(6): 2756. doi: 10.1021/jp909895q

[13]

Teranishi T, Sato K, Kondo K. Optical properties of a magnetic semiconductor:chalcopyrite CuFeS2:I. absorption spectra of CuFeS2 and Fe-doped CuAlS2 and CuGaS2[J]. J Phys Soc Japan, 1974, 36: 1618. doi: 10.1143/JPSJ.36.1618

[14]

Von Bardeleben H J, Goltzene A, Meyer B. Effects of iron content and stoichiometry on the coloration of CuGaS2[J]. Phys Status Solidi A, 1978, 48(2).

[15]

Sato K, Teranishi T. Effect of delocalization of d-electrons on the optical reflectivity spectra of CuGa1-xFexS2 and CuAl1-xFexS2 systems[J]. Jpn J Appl Phys, 1980, 19.

[16]

Marsen B, Klemz S, Landi G. Phases in copper-gallium-metal-sulfide films (metal=titanium, iron, or tin)[J]. Thin Solid Films, 2011, 519(21): 7284. doi: 10.1016/j.tsf.2011.01.137

[17]

Seminóvski Y, Palacios P, Wahnón P. Intermediate band position modulated by Zn addition in Ti doped CuGaS2[J]. Thin Solid Films, 2011, 519(21): 7517. doi: 10.1016/j.tsf.2010.12.136

[18]

Seminóvski Y, Palacios P, Conesa J C. Thermodynamics of zinc insertion in CuGaS2:Ti, used as a modulator agent in an intermediate-band photovoltaic material[J]. Computational and Theoretical Chemistry, 2011, 975(1-3): 134. doi: 10.1016/j.comptc.2010.12.018

[19]

Palacios P, Aguilera I, Wahnon P. Thermodynamics of the formation of Ti-and Cr-doped CuGaS2 intermediate-band photovoltaic materials[J]. J Phys Chem C, 2008, 112(25): 9525. doi: 10.1021/jp0774185

[20]

Palacios P, Aguilera I, Wahnón P. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials[J]. Thin Solid Films, 2008, 516(20): 7070. doi: 10.1016/j.tsf.2007.12.062

[21]

Aguilera I, Palacios P, Wahnón P. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles[J]. Thin Solid Films, 2008, 516(20): 7055. doi: 10.1016/j.tsf.2007.12.085

[22]

Palacios P, Sánchez K, Conesa J C. Theoretical modelling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds[J]. Thin Solid Films, 2007, 515(15): 6280. doi: 10.1016/j.tsf.2006.12.170

[23]

Zhao Y J, Zunger A. Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2[J]. Physl Rev B, 2004, 69(10): 104422. doi: 10.1103/PhysRevB.69.104422

[24]

Zhao Y J, Zunger A. Site preference for Mn substitution in spintronic CuMX2VI chalcopyrite semiconductors[J]. Phys Rev B, 2004, 69(7): 075208. doi: 10.1103/PhysRevB.69.075208

[25]

Picozzi S, Zhao Y J, Freeman A J. Mn-doped CuGaS2 chalcopyrites:an ab initio study of ferromagnetic semiconductors[J]. Phys Rev B, 2002, 66(20): 205206. doi: 10.1103/PhysRevB.66.205206

[26]

Kaufmann U. Electronic structure of Ni+ in IB-Ⅲ-VI2 chalcopyrite semiconductors[J]. Physl Rev B, 1975, 11(7): 2478. doi: 10.1103/PhysRevB.11.2478

[27]

Lin Guijiang, Wu Jyhchiarng, Huang Meichun. Theoretical modeling of the interface recombination effect on the performance of Ⅲ-V tandem solar cells[J]. Journal of Semiconductors, 2010, 31(8): 082004. doi: 10.1088/1674-4926/31/8/082004

[28]

Gao Pan, Zhang Xuejun, Zhou Wenfang. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium[J]. Journal of Semiconductors, 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001

[29]

Li Lezhong, Yang Weiqing, Ding Yingchun. First principle study of the electronic structure of hafnium-doped anatase TiO2[J]. Journal of Semiconductors, 2012, 33(1): 012002. doi: 10.1088/1674-4926/33/1/012002

[30]

Zheng Wenli, Li Tinghui. Compositional dependence of Raman frequencies in SixGe1-x alloys[J]. Journal of Semiconductors, 2012, 33(11): 112001. doi: 10.1088/1674-4926/33/11/112001

[31]

Si Panpan, Su Xiyu, Hou Qinying. First-principles calculation of the electronic band of ZnO doped with C[J]. Journal of Semiconductors, 2009, 30(5): 052001. doi: 10.1088/1674-4926/30/5/052001

[32]

Shih B Cg, Zhang Y, Zhang W. Screened Coulomb interaction of localized electrons in solids from first principles[J]. Physl Rev B, 2012, 85(4): 045132. doi: 10.1103/PhysRevB.85.045132

[33]

Xu B, Li X, Qin Z. Electronic and optical properties of CuGaS2:first-principles calculations[J]. Physica B:Condensed Matter, 2011, 406(4): 946. doi: 10.1016/j.physb.2010.12.034

[34]

Romero A H, Cardona M, Kremer R K. Electronic and phononic properties of the chalcopyrite CuGaS2[J]. Phys Rev B, 2011, 83(19): 195208. doi: 10.1103/PhysRevB.83.195208

[35]

Aguilera I, Vidal J, Wahnón P. First-principles study of the band structure and optical absorption of CuGaS2[J]. Phys Rev B, 2011, 84(8): 085145. doi: 10.1103/PhysRevB.84.085145

[36]

Bailey C L, Liborio L, Mallia G. Defect physics of CuGaS2[J]. Physl Rev B, 2010, 81(20): 205214. doi: 10.1103/PhysRevB.81.205214

[37]

Clark S J, Segall M D, Pickard C J. First principles methods using CASTEP[J]. Zeitschrift Fur Kristallographie, 2005, 220(5/6): 567.

[38]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. doi: 10.1103/PhysRevLett.77.3865

[39]

Cococcioni M, de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method[J]. Phys Rev B, 2005, 71(3): 035105. doi: 10.1103/PhysRevB.71.035105

[40]

Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators:Hubbard U instead of Stoner I[J]. Phys Rev B, 1991, 44(3): 943. doi: 10.1103/PhysRevB.44.943

[41]

Pfrommer B G, Câté M, Louie S G. Relaxation of crystals with the quasi-Newton method[J]. Journal of Computational Physics, 1997, 131(1): 233. doi: 10.1006/jcph.1996.5612

[42]

Van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities:applications to Ⅲ-nitrides[J]. J Appl Phys, 2004, 95(8): 3851. doi: 10.1063/1.1682673

[43]

Tell B, Shay J L, Kasper H M. Electrical properties, optical properties, and band structure of CuGaS2 and CuInS2[J]. Phys Rev B, 1971, 4(8): 2463. doi: 10.1103/PhysRevB.4.2463

[44]

Bellabarba C, González J, Rincón C. Optical-absorption spectrum near the exciton band edge in CuGaS2 at 5 K[J]. Phys Rev B, 1996, 53(12): 7792. doi: 10.1103/PhysRevB.53.7792

[45]

González J, Moya E, Chervin J C. Anharmonic effects in light scattering due to optical phonons in CuGaS2[J]. Phys Rev B, 1996, 54(7): 4707. doi: 10.1103/PhysRevB.54.4707

[1]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[2]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[3]

Yashika Gupta, P. Arun. Optimization of SnS active layer thickness for solar cell application. J. Semicond., 2017, 38(11): 113001. doi: 10.1088/1674-4926/38/11/113001

[4]

Bahniman Ghosh, Abhishek Gupta, Bhupesh Bishnoi. Effects of defects on the electronic properties of WTe2 armchair nanoribbons. J. Semicond., 2014, 35(11): 113002. doi: 10.1088/1674-4926/35/11/113002

[5]

Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

[6]

Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003

[7]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[8]

Yingce Yan, Qi Wang, Huifang Ma. First principles calculations of electronic and optical properties of GaN1-xBix alloys. J. Semicond., 2014, 35(12): 122002. doi: 10.1088/1674-4926/35/12/122002

[9]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[10]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[11]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[12]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[13]

Soumaia Djaadi, Kamal Eddine Aiadi, Sofiane Mahtout. First principles study of structural, electronic and magnetic properties of SnGen(0, ±1) (n = 1–17) clusters. J. Semicond., 2018, 39(4): 042001. doi: 10.1088/1674-4926/39/4/042001

[14]

Sandong Guo . First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure. J. Semicond., 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

[15]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[16]

Peijiang Niu, Jinliang Yan, Delan Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004

[17]

J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films. J. Semicond., 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002

[18]

Yao Zhaohui, Chen Tingjin, Xia Chaofeng, Yuan Hairong, Liu Zuming, Liao Hua, Wang Fan. Structural and Optical Properties of CdTe Thin Films on Glass Grown by Hot Wall Vacuum Deposition. J. Semicond., 2006, 27(7): 1236.

[19]

Wang Li, Pu Yong, Fang Wenqing, Mo Chunlan, Xiong Chuanbing, Jiang Fengyi. Effect of Surface-Covered Annealing on the Optical Properties of ZnO Films Grown by MOCVD. J. Semicond., 2003, 24(3): 409.

[20]

Zuo Chunying, Wen Jing, Zhong Cheng. First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO. J. Semicond., 2012, 33(7): 072001. doi: 10.1088/1674-4926/33/7/072001

Search

Advanced Search >>

GET CITATION

Z Y Zhao, D C Zhou, J Yi. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations[J]. J. Semicond., 2014, 35(1): 013002. doi: 10.1088/1674-4926/35/1/013002.

Export: BibTex EndNote

Article Metrics

Article views: 1068 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 30 May 2013 Manuscript revised: 04 July 2013 Online: Published: 01 January 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误