J. Semicond. > Volume 35 > Issue 1 > Article Number: 014003

Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors

Jie Wu 1, , Junfei Shi 1, , Chengyuan Dong 1, , , Zhongfei Zou 2, , Yuting Chen 1, , Daxiang Zhou 1, , Zhe Hu 1, and Runze Zhan 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The effect of active layer deposition temperature on the electrical performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) is investigated. With increasing annealing temperature, TFT performance is firstly improved and then degraded generally. Here TFTs with best performance defined as "optimized-annealed" are selected to study the effect of active layer deposition temperature. The field effect mobility reaches maximum at deposition temperature of 150℃ while the room-temperature fabricated device shows the best subthreshold swing and off-current. From Hall measurement results, the carrier concentration is much higher for intentional heated a-IGZO films, which may account for the high off-current in the corresponding TFT devices. XPS characterization results also reveal that deposition temperature affects the atomic ratio and O1s spectra apparently. Importantly, the variation of field effect mobility of a-IGZO TFTs with deposition temperature does not coincide with the tendencies in Hall mobility of a-IGZO thin films. Based on the further analysis of the experimental results on a-IGZO thin films and the corresponding TFT devices, the trap states at front channel interface rather than IGZO bulk layer properties may be mainly responsible for the variations of field effect mobility and subthreshold swing with IGZO deposition temperature.

Key words: thin film transistorsamorphous oxide semiconductorsmagnetron sputteringdeposition temperature

Abstract: The effect of active layer deposition temperature on the electrical performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) is investigated. With increasing annealing temperature, TFT performance is firstly improved and then degraded generally. Here TFTs with best performance defined as "optimized-annealed" are selected to study the effect of active layer deposition temperature. The field effect mobility reaches maximum at deposition temperature of 150℃ while the room-temperature fabricated device shows the best subthreshold swing and off-current. From Hall measurement results, the carrier concentration is much higher for intentional heated a-IGZO films, which may account for the high off-current in the corresponding TFT devices. XPS characterization results also reveal that deposition temperature affects the atomic ratio and O1s spectra apparently. Importantly, the variation of field effect mobility of a-IGZO TFTs with deposition temperature does not coincide with the tendencies in Hall mobility of a-IGZO thin films. Based on the further analysis of the experimental results on a-IGZO thin films and the corresponding TFT devices, the trap states at front channel interface rather than IGZO bulk layer properties may be mainly responsible for the variations of field effect mobility and subthreshold swing with IGZO deposition temperature.

Key words: thin film transistorsamorphous oxide semiconductorsmagnetron sputteringdeposition temperature



References:

[1]

Takagi A, Nomura K, Ohta H. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4[J]. Thin Solid Films, 2005, 486(1/2): 38.

[2]

Hosono H, Kim S, Miyakawa M, et al. Thin film and bulk fabrication of room-temperature-stable electrode C12A7: e- utilizing reduced amorphous 12CaO· 7Al2O3(C12A7). J Non-Cryst Solids, 2008, 354(19-25): 2772

[3]

Chiang H Q, Wager J F, Hoffman R L. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer[J]. Appl Phys Lett, 2005, 86(1): 013503. doi: 10.1063/1.1843286

[4]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature (London), 2004, 432(7016): 488. doi: 10.1038/nature03090

[5]

Kim G H, Shin H S, Ahn B D. Formation mechanism of solution-processed nanocrystalline InGaZnO thin film as active channel layer in thin-film transistor[J]. J Electrochem Soc, 2009, 156(1).

[6]

Kim G H, Kim H S, Shin H S. Inkjet-printed InGaZnO thin film transistor[J]. Thin Solid Films, 2009, 517(14): 4007. doi: 10.1016/j.tsf.2009.01.151

[7]

Shi J F, Dong C Y, Dai W J. Influence of RF power on electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices[J]. Journal of Semiconductors, 2013, 34(8): 084003. doi: 10.1088/1674-4926/34/8/084003

[8]

Nomura K, Kamiya T, Ohta H. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing[J]. Appl Phys Lett, 2008, 93(19): 192107. doi: 10.1063/1.3020714

[9]

Hsieh H H, Kamiya T, Nomura K. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states[J]. Appl Phys Lett, 2008, 92(13): 133503. doi: 10.1063/1.2857463

[10]

Nomura K, Kamiya T, Yanagi H. Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive X-ray photoelectron spectroscopy[J]. Appl Phys Lett, 2008, 92(20): 202117. doi: 10.1063/1.2927306

[11]

Hirata A, Morino T, Hirotsu Y. Local atomic structure analysis of Zr-Ni and Zr-Cu metallic glasses using electron diffraction[J]. Mater Trans, 2007, 48(06): 1299. doi: 10.2320/matertrans.MF200618

[12]

Singh S, Srinivasa R S, Major S S. Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive RF magnetron sputtering[J]. Thin Solid Films, 2007, 515(24): 8718. doi: 10.1016/j.tsf.2007.03.168

[13]

Moon M R, Na S, Jeon H. Effects of substrate heating on the amorphous structure of InGaZnO films and the electrical properties of their thin film transistors[J]. Appl Phys Express, 2010, 3(11): 111101. doi: 10.1143/APEX.3.111101

[14]

Ahn B D, Shin H S, Kim D L. Origin of device performance degradation in InGaZnO thin-film transistors after crystallization[J]. Jpn J Appl Phys, 2012, 51(1): 015601. doi: 10.1143/JJAP.51.015601

[15]

Trinh T T, Nguyen V D, Ryu K. Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer[J]. Semicond Sci Technol, 2011, 26(8): 085012. doi: 10.1088/0268-1242/26/8/085012

[16]

Iwasaki T, Itagaki N, Den T. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels:an application to amorphous oxide semiconductors in In-Ga-Zn-O system[J]. Appl Phys Lett, 2007, 90(24): 242114. doi: 10.1063/1.2749177

[17]

Kim K H, Kim G H, Kim H J. Multi-band theory of magnetoexcitons in ZnO/ZnMnO quantum wells[J]. Phys Status Solidi, 2010, 7(6): 1660.

[18]

Chen M C, Chang T C, Huang S Y. Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory[J]. Electro-Chem Solid-State Lett, 2010, 13(6).

[19]

Nomura K, Kamiya T, Ohta H. Relationship between non-localized tail states and carrier transport in amorphous oxide semiconductor, In-Ga-Zn-O[J]. Phys Status Solidi A, 2008, 205(8): 1910. doi: 10.1002/pssa.v205:8

[20]

Rolland A, Richard J, Kleider J P. Electrical properties of amorphous silicon transistors and MIS-devices:comparative study of top nitride and bottom nitride configurations[J]. J Electrochem Soc, 1993, 140(12): 3679. doi: 10.1149/1.2221149

[1]

Takagi A, Nomura K, Ohta H. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4[J]. Thin Solid Films, 2005, 486(1/2): 38.

[2]

Hosono H, Kim S, Miyakawa M, et al. Thin film and bulk fabrication of room-temperature-stable electrode C12A7: e- utilizing reduced amorphous 12CaO· 7Al2O3(C12A7). J Non-Cryst Solids, 2008, 354(19-25): 2772

[3]

Chiang H Q, Wager J F, Hoffman R L. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer[J]. Appl Phys Lett, 2005, 86(1): 013503. doi: 10.1063/1.1843286

[4]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature (London), 2004, 432(7016): 488. doi: 10.1038/nature03090

[5]

Kim G H, Shin H S, Ahn B D. Formation mechanism of solution-processed nanocrystalline InGaZnO thin film as active channel layer in thin-film transistor[J]. J Electrochem Soc, 2009, 156(1).

[6]

Kim G H, Kim H S, Shin H S. Inkjet-printed InGaZnO thin film transistor[J]. Thin Solid Films, 2009, 517(14): 4007. doi: 10.1016/j.tsf.2009.01.151

[7]

Shi J F, Dong C Y, Dai W J. Influence of RF power on electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices[J]. Journal of Semiconductors, 2013, 34(8): 084003. doi: 10.1088/1674-4926/34/8/084003

[8]

Nomura K, Kamiya T, Ohta H. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing[J]. Appl Phys Lett, 2008, 93(19): 192107. doi: 10.1063/1.3020714

[9]

Hsieh H H, Kamiya T, Nomura K. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states[J]. Appl Phys Lett, 2008, 92(13): 133503. doi: 10.1063/1.2857463

[10]

Nomura K, Kamiya T, Yanagi H. Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive X-ray photoelectron spectroscopy[J]. Appl Phys Lett, 2008, 92(20): 202117. doi: 10.1063/1.2927306

[11]

Hirata A, Morino T, Hirotsu Y. Local atomic structure analysis of Zr-Ni and Zr-Cu metallic glasses using electron diffraction[J]. Mater Trans, 2007, 48(06): 1299. doi: 10.2320/matertrans.MF200618

[12]

Singh S, Srinivasa R S, Major S S. Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive RF magnetron sputtering[J]. Thin Solid Films, 2007, 515(24): 8718. doi: 10.1016/j.tsf.2007.03.168

[13]

Moon M R, Na S, Jeon H. Effects of substrate heating on the amorphous structure of InGaZnO films and the electrical properties of their thin film transistors[J]. Appl Phys Express, 2010, 3(11): 111101. doi: 10.1143/APEX.3.111101

[14]

Ahn B D, Shin H S, Kim D L. Origin of device performance degradation in InGaZnO thin-film transistors after crystallization[J]. Jpn J Appl Phys, 2012, 51(1): 015601. doi: 10.1143/JJAP.51.015601

[15]

Trinh T T, Nguyen V D, Ryu K. Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer[J]. Semicond Sci Technol, 2011, 26(8): 085012. doi: 10.1088/0268-1242/26/8/085012

[16]

Iwasaki T, Itagaki N, Den T. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels:an application to amorphous oxide semiconductors in In-Ga-Zn-O system[J]. Appl Phys Lett, 2007, 90(24): 242114. doi: 10.1063/1.2749177

[17]

Kim K H, Kim G H, Kim H J. Multi-band theory of magnetoexcitons in ZnO/ZnMnO quantum wells[J]. Phys Status Solidi, 2010, 7(6): 1660.

[18]

Chen M C, Chang T C, Huang S Y. Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory[J]. Electro-Chem Solid-State Lett, 2010, 13(6).

[19]

Nomura K, Kamiya T, Ohta H. Relationship between non-localized tail states and carrier transport in amorphous oxide semiconductor, In-Ga-Zn-O[J]. Phys Status Solidi A, 2008, 205(8): 1910. doi: 10.1002/pssa.v205:8

[20]

Rolland A, Richard J, Kleider J P. Electrical properties of amorphous silicon transistors and MIS-devices:comparative study of top nitride and bottom nitride configurations[J]. J Electrochem Soc, 1993, 140(12): 3679. doi: 10.1149/1.2221149

[1]

Junfei Shi, Chengyuan Dong, Wenjun Dai, Jie Wu, Yuting Chen, Runze Zhan. The influence of RF power on the electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices. J. Semicond., 2013, 34(8): 084003. doi: 10.1088/1674-4926/34/8/084003

[2]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

[3]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[4]

Fengzhang Zhang, Xiangqi Li, Xiaofeng Wu, Ximei Fan, Chaoliang Zhang. Influence of deposition temperature on CdS thin films by polyol method. J. Semicond., 2014, 35(8): 083003. doi: 10.1088/1674-4926/35/8/083003

[5]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[6]

Zhang Jun, Xie Erqing, Fu Yujun, Li Hui, Shao Lexi. Influence of Substrate Temperature and Nitrogen Gas on Zinc Nitride Thin Films Prepared by RF Reactive Sputtering. J. Semicond., 2007, 28(8): 1173.

[7]

Paragjyoti Gogoi, Rajib Saikia, Sanjib Changmai. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique. J. Semicond., 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002

[8]

Zhang Huafu, Liu Hanfa, Lei Chengxin, Zhou Aiping, Yuan Changkun. Low-temperature deposition of transparent conducting Mn–W co-doped ZnO thin films. J. Semicond., 2010, 31(8): 083005. doi: 10.1088/1674-4926/31/8/083005

[9]

Zhefeng Li, Xianye Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors. J. Semicond., 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004

[10]

Zhang Huafu, Yang Shugang, Liu Hanfa, Yuan Changkun. Preparation and characterization of transparent conducting ZnO:W films by DC magnetron sputtering. J. Semicond., 2011, 32(4): 043002. doi: 10.1088/1674-4926/32/4/043002

[11]

Ma Quanbao, Zhu Liping, Ye Zhizhen, He Haiping, Wang Jingrui, Hu Shaohua, Zhao Binghui. Influence of Sputtering Pressure on the Properties of ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering. J. Semicond., 2007, 28(S1): 285.

[12]

Hong Li, Hongbin Pu, Chunlei Zheng, Zhiming Chen. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering. J. Semicond., 2015, 36(6): 063005. doi: 10.1088/1674-4926/36/6/063005

[13]

Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001

[14]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[15]

Bing Cheng, Yijun Yin, Jianqiang Han, Jie Zhang. The TCR of Ni24.9Cr72.5Si2.6 thin films deposited by DC and RF magnetronsputtering. J. Semicond., 2017, 38(5): 053005. doi: 10.1088/1674-4926/38/5/053005

[16]

M. Benhaliliba, A. Tiburcio-Silver, A. Avila-Garcia, A. Tavira, Y. S. Ocak, M. S. Aida, C. E. Benouis. The sprayed ZnO films: nanostructures and physical parameters. J. Semicond., 2015, 36(8): 083001. doi: 10.1088/1674-4926/36/8/083001

[17]

Chen Weidong, Feng Lianghuan, Lei Zhi, Zhang Jingquan, Wu Lili, Cai Wei, Cai Yaping, Yao Feifei, Li Wei, Li Bing, Zheng Jiagui. Growth of AlSb Polycrystalline Films by Magnetron Sputtering and Annealing. J. Semicond., 2006, 27(3): 541.

[18]

Ravindra Waykar, Amit Pawbake, Rupali Kulkarni, Ashok Jadhavar, Adinath Funde, Vaishali Waman, Rupesh Dewan, Habib Pathan, Sandesh Jadkar. Low substrate temperature deposition of transparent and conducting ZnO: Al thin films by RF magnetron sputtering. J. Semicond., 2016, 37(4): 043001. doi: 10.1088/1674-4926/37/4/043001

[19]

Zhu Xiaming, Wu Huizhen, Wang Shuangjiang, Zhang Yingying, Cai Chunfeng, Si Jianxiao, Yuan Zijian, Du Xiaoyang, Dong Shurong. Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors. J. Semicond., 2009, 30(3): 033001. doi: 10.1088/1674-4926/30/3/033001

[20]

Li Baohe, Hwang Pol, Yang Tao, Zhai Zhonghai, Zhu Fengwu. Structure and Magnetic Properties of Vacuum Annealed Fe/Pt Multilayers. J. Semicond., 2005, 26(S1): 32.

Search

Advanced Search >>

GET CITATION

J Wu, J F Shi, C Y Dong, Z F Zou, Y T Chen, D X Zhou, Z Hu, R Z Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors[J]. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003.

Export: BibTex EndNote

Article Metrics

Article views: 706 Times PDF downloads: 13 Times Cited by: 0 Times

History

Manuscript received: 17 June 2013 Manuscript revised: 29 July 2013 Online: Published: 01 January 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误