J. Semicond. > Volume 35 > Issue 11 > Article Number: 113003

A photoluminescence study of plasma reactive ion etching-induced damage in GaN

Z. Mouffak 1, , , A. Bensaoula 2, and L. Trombetta 3,

+ Author Affilications + Find other works by these authors

PDF

Abstract: GaN films with reactive ion etching (RIE) induced damage were analyzed using photoluminescence (PL). We observed band-edge as well as donor-acceptor peaks with associated phonon replicas, all in agreement with previous studies. While both the control and damaged samples have their band-edge peak location change with temperature following the Varshni formula, its intensity however decreases with damage while the D-A peak increases considerably. Nitrogen post-etch plasma was shown to improve the band edge peak and decrease the D-A peak. This suggests that the N2 plasma has helped reduce the number of trapped carriers that were participating in the D-A transition and made the D°X transition more active, which reaffirms the N2 post-etch plasma treatment as a good technique to heal the GaN surface, most likely by filling the nitrogen vacancies previously created by etch damage.

Key words: GaNetch damagephotoluminescencereactive ion etching

Abstract: GaN films with reactive ion etching (RIE) induced damage were analyzed using photoluminescence (PL). We observed band-edge as well as donor-acceptor peaks with associated phonon replicas, all in agreement with previous studies. While both the control and damaged samples have their band-edge peak location change with temperature following the Varshni formula, its intensity however decreases with damage while the D-A peak increases considerably. Nitrogen post-etch plasma was shown to improve the band edge peak and decrease the D-A peak. This suggests that the N2 plasma has helped reduce the number of trapped carriers that were participating in the D-A transition and made the D°X transition more active, which reaffirms the N2 post-etch plasma treatment as a good technique to heal the GaN surface, most likely by filling the nitrogen vacancies previously created by etch damage.

Key words: GaNetch damagephotoluminescencereactive ion etching



References:

[1]

Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J]. Appl Phys Lett, 1994, 64: 1687. doi: 10.1063/1.111832

[2]

Popovici G. Group Ⅲ nitride semiconductor compounds, physics and applications. Gil B, ed. Oxford:Clarendon Press, 1999

[3]

Wu Y F, Keller P B, Kapolnek D. Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors[J]. Appl Phys Lett, 1996, 69: 1438. doi: 10.1063/1.117607

[4]

Morkoç H, Strite S, Gao G B. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. J Appl Phys, 1994, 76: 1363. doi: 10.1063/1.358463

[5]

Morkoç H. Nitride semiconductors and devices[J]. Springer, Berlin, Heidelberg:Springer Series in Material Science, 1999.

[6]

Pearton S J, Vartuli C B, Zolper J C. Ion implantation doping and isolation of GaN[J]. Appl Phys Lett, 1995, 67: 1435. doi: 10.1063/1.114518

[7]

Strite S, Morkoç H. GaN, AlN, and InN:a review[J]. J Vac Sci Technol B, 1992, 10: 1237. doi: 10.1116/1.585897

[8]

Goldenberg B, Zook J D, Ulmer R J. Ultraviolet and violet light-emitting GaN diodes grown by low-pressure metalorganic chemical vapor deposition[J]. Appl Phys Lett, 1993, 62: 381. doi: 10.1063/1.108963

[9]

Mouffak Z, Medelci-Djezzar N, Boney C. Effect of photo-assisted RIE damage on GaN[J]. MRS Internet J Nitride Semicond Res, 2003, 8: 7. doi: 10.1557/S1092578300000508

[10]

Mouffak Z, Bensaoula A, Trombetta L. Temperature dependence of the energy gap in semiconductors[J]. J Appl Phys, 2004, 95: 727. doi: 10.1063/1.1632552

[11]

Hwang S J, Cho Y H, Song J J. Photoluminescence excitation study of LO-phonon assisted excitonic transitions in GaN[J]. MRS Proceedings, 1997, 482: 691. doi: 10.1557/PROC-482-691

[12]

Fischer S, Wetzel C, Haller E E. On p-type doping in GaN-acceptor binding energies[J]. Appl Phys Lett, 1995, 67: 1298. doi: 10.1063/1.114403

[13]

Götz W, Johnson N M, Chen C. Activation energies of Si donors in GaN[J]. Appl Phys Lett, 1996, 68: 3144. doi: 10.1063/1.115805

[14]

Philippe A. Electro-optical characterization of hexagonal and cubic gallium nitride for blue emitters application.PhD Dissertation[J]. Institut National des Sciences Appliquées (INSA) de Lyon, 1999.

[15]

Varshni Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34: 149. doi: 10.1016/0031-8914(67)90062-6

[16]

Monemar B. Fundamental energy gap of GaN from photoluminescence excitation spectra[J]. Phys Rev B, 1974, 10: 676. doi: 10.1103/PhysRevB.10.676

[17]

Gil B, Briot O, Aulombard R L. Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry[J]. Phys Rev B, 1995, 52: 17028. doi: 10.1103/PhysRevB.52.R17028

[18]

Merz C, Kunzer M, Kaufmann U. Free and bound excitons in thin wurtzite GaN layers on sapphire[J]. Semicond Sci Tech, 1996, 11: 712. doi: 10.1088/0268-1242/11/5/010

[19]

Xu S J, Liu W, Li M F. Direct determination of free exciton binding energy from phonon-assisted luminescence spectra in GaN epilayers[J]. Appl Phys Lett, 2002, 81: 2959. doi: 10.1063/1.1514391

[1]

Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J]. Appl Phys Lett, 1994, 64: 1687. doi: 10.1063/1.111832

[2]

Popovici G. Group Ⅲ nitride semiconductor compounds, physics and applications. Gil B, ed. Oxford:Clarendon Press, 1999

[3]

Wu Y F, Keller P B, Kapolnek D. Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors[J]. Appl Phys Lett, 1996, 69: 1438. doi: 10.1063/1.117607

[4]

Morkoç H, Strite S, Gao G B. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. J Appl Phys, 1994, 76: 1363. doi: 10.1063/1.358463

[5]

Morkoç H. Nitride semiconductors and devices[J]. Springer, Berlin, Heidelberg:Springer Series in Material Science, 1999.

[6]

Pearton S J, Vartuli C B, Zolper J C. Ion implantation doping and isolation of GaN[J]. Appl Phys Lett, 1995, 67: 1435. doi: 10.1063/1.114518

[7]

Strite S, Morkoç H. GaN, AlN, and InN:a review[J]. J Vac Sci Technol B, 1992, 10: 1237. doi: 10.1116/1.585897

[8]

Goldenberg B, Zook J D, Ulmer R J. Ultraviolet and violet light-emitting GaN diodes grown by low-pressure metalorganic chemical vapor deposition[J]. Appl Phys Lett, 1993, 62: 381. doi: 10.1063/1.108963

[9]

Mouffak Z, Medelci-Djezzar N, Boney C. Effect of photo-assisted RIE damage on GaN[J]. MRS Internet J Nitride Semicond Res, 2003, 8: 7. doi: 10.1557/S1092578300000508

[10]

Mouffak Z, Bensaoula A, Trombetta L. Temperature dependence of the energy gap in semiconductors[J]. J Appl Phys, 2004, 95: 727. doi: 10.1063/1.1632552

[11]

Hwang S J, Cho Y H, Song J J. Photoluminescence excitation study of LO-phonon assisted excitonic transitions in GaN[J]. MRS Proceedings, 1997, 482: 691. doi: 10.1557/PROC-482-691

[12]

Fischer S, Wetzel C, Haller E E. On p-type doping in GaN-acceptor binding energies[J]. Appl Phys Lett, 1995, 67: 1298. doi: 10.1063/1.114403

[13]

Götz W, Johnson N M, Chen C. Activation energies of Si donors in GaN[J]. Appl Phys Lett, 1996, 68: 3144. doi: 10.1063/1.115805

[14]

Philippe A. Electro-optical characterization of hexagonal and cubic gallium nitride for blue emitters application.PhD Dissertation[J]. Institut National des Sciences Appliquées (INSA) de Lyon, 1999.

[15]

Varshni Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34: 149. doi: 10.1016/0031-8914(67)90062-6

[16]

Monemar B. Fundamental energy gap of GaN from photoluminescence excitation spectra[J]. Phys Rev B, 1974, 10: 676. doi: 10.1103/PhysRevB.10.676

[17]

Gil B, Briot O, Aulombard R L. Valence-band physics and the optical properties of GaN epilayers grown onto sapphire with wurtzite symmetry[J]. Phys Rev B, 1995, 52: 17028. doi: 10.1103/PhysRevB.52.R17028

[18]

Merz C, Kunzer M, Kaufmann U. Free and bound excitons in thin wurtzite GaN layers on sapphire[J]. Semicond Sci Tech, 1996, 11: 712. doi: 10.1088/0268-1242/11/5/010

[19]

Xu S J, Liu W, Li M F. Direct determination of free exciton binding energy from phonon-assisted luminescence spectra in GaN epilayers[J]. Appl Phys Lett, 2002, 81: 2959. doi: 10.1063/1.1514391

[1]

Song Yingping, Guo Xia, Ai Weiwei, Zhou Yueping, Shen Guangdi. Damage Removal in GaN-LEDs by Two-Step Etching Technology. J. Semicond., 2006, 27(9): 1635.

[2]

Gong Xin, Lü Ling, Hao Yue, Li Peixian, Zhou Xiaowei, Chen Haifeng. Study on ICP Etching Induced Damage in p-GaN. J. Semicond., 2007, 28(7): 1097.

[3]

Zhang Ping, Liu Junlin, Zheng Changda, Jiang Fengyi. Influence of Etching Depth on Characteristics of GaN/Si Blue LEDs. J. Semicond., 2008, 29(3): 563.

[4]

Gao Zhiyuan, Hao Yue, Zhang Jincheng, Zhang Jinfeng, Chen Haifeng, Ni Jinyu. Observation of Dislocation Etch Pits in GaN Epilayers by Atomic Force Microscopy and Scanning Electron Microscopy. J. Semicond., 2007, 28(4): 473.

[5]

Liu Beiping, Li Xiaoliang, Zhu Haibo. Cl2-Based Dry Etching of GaN Using Inductively Coupled Plasma. J. Semicond., 2006, 27(7): 1335.

[6]

Zhao Liwei, Liu Caichi, Teng Xiaoyun, Hao Qiuyan, Zhu Junshan, Sun Shilong, Wang Haiyun, Xu Yuesheng, Feng Yuchun, Guo Baoping. Light-Assisted Wet Etching of Dislocations in GaN Grown on Silicon. J. Semicond., 2006, 27(6): 1046.

[7]

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, Hu Xiaodong, Zhang Guoyi. Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs. J. Semicond., 2006, 27(S1): 20.

[8]

Jianjie Wu, Jinyang Li, Yanqing Yao, Zhimei Qi. Reactive ion etching of Ti-diffused LiNbO3 slab waveguides. J. Semicond., 2013, 34(8): 086001. doi: 10.1088/1674-4926/34/8/086001

[9]

Jing Xiaocheng, Yao Ruohe, Lin Yushu. Magnetic Field Optimization of a Reactive Ion Etching Device with Magnetic Containment. J. Semicond., 2006, 27(S1): 422.

[10]

Yao Guangrui, Fan Guanghan, Li Shuti, Zhang Yong, Zhou Tianmin. Improved optical performance of GaN grown on pattered sapphire substrate. J. Semicond., 2009, 30(1): 013001. doi: 10.1088/1674-4926/30/1/013001

[11]

Juntao Li, Bo Liu, Zhitang Song, Dongning Yao, Gaoming Feng, Aodong He, Cheng Peng, Songlin Feng. Reactive ion etching of Si2Sb2Te5 in CF4/Ar plasma for a nonvolatile phase-change memory device. J. Semicond., 2013, 34(5): 056001. doi: 10.1088/1674-4926/34/5/056001

[12]

Wang Maojun, Shen Bo, Wang Yan, Huang Sen, Xu Fujun, Xu Jian, Yang Zhijian, Zhang Guoyi. High Temperature Performance of GaN and AIxGal-xN/GaN Heterostructures. J. Semicond., 2007, 28(S1): 376.

[13]

Xilin Li, Ping Ma, Xiaoli Ji, Tongbo Wei, Xiaoyu Tan, Junxi Wang, Jinmin Li. Implementation of slow and smooth etching of GaN by inductively coupled plasma. J. Semicond., 2018, 39(11): 113002. doi: 10.1088/1674-4926/39/11/113002

[14]

Li Ti, Pan Huapu, Xu Ke, Hu Xiaodong. Optimization of the Electron Blocking Layer in GaN Laser Diodes. J. Semicond., 2006, 27(8): 1458.

[15]

Chen Jun, Wang Jianfeng, Wang Hui, Zhao Degang, Zhu Jianjun, Zhang Shuming, Yang Hui. Dislocation Reduction in GaN on Sapphire by Epitaxial Lateral Overgrowth. J. Semicond., 2006, 27(3): 419.

[16]

Chen Sheng, , Li Zhihong, Zhang Guobing, Guo Hui, Wang Yu. Etching Characteristics of PECVD SiC. J. Semicond., 2006, 27(S1): 381.

[17]

Kang Xiangning, Bao Kui, Chen Zhizhong, Xu Ke, Zhang Bei, Yu Tongjun, Nie Ruijuan, Zhang Guoyi. Vertical Electrode Structure GaN Based Light Emitting Diodes. J. Semicond., 2007, 28(S1): 482.

[18]

Chen Yu, Wang Liangchen, Yi Xiaoyan, Wang Libin, Liu Zhiqiang, Ma Long, Yan Lihong. Analyses in Reliability of GaN-Based High Power Light Emitting Diodes. J. Semicond., 2007, 28(S1): 500.

[19]

Su Zhiguo, Xu Jintong, Chen Jun, Li Xiangyang, Liu Ji, Zhao Degang. Negative Persistent Photoconductivity in Unintentionally Doped n-Type GaN. J. Semicond., 2007, 28(6): 878.

[20]

Gao Zhiyuan, Hao Yue, Li Peixian, Zhang Jincheng. Influence of Threading Dislocations on the Luminescence Efficiency of GaN Heteroepitaxial Layers. J. Semicond., 2008, 29(3): 521.

Search

Advanced Search >>

GET CITATION

Z. Mouffak, A. Bensaoula, L. Trombetta. A photoluminescence study of plasma reactive ion etching-induced damage in GaN[J]. J. Semicond., 2014, 35(11): 113003. doi: 10.1088/1674-4926/35/11/113003.

Export: BibTex EndNote

Article Metrics

Article views: 824 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 26 May 2014 Manuscript revised: 10 July 2014 Online: Published: 01 November 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误