J. Semicond. > Volume 35 > Issue 11 > Article Number: 113006

Growth and characterization of InGaN back barrier HEMTs structure with a compositionally step-graded AlGaN layer

Jian Tang 1, , , Xiaoliang Wang 2, and Hongling Xiao 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A novel InGaN back barrier high electron mobility transistors structure with a compositionally step-graded AlGaN barrier layer was grown by metal organic chemical vapor deposition on sapphire substrate. The structural and electrical properties of two samples were investigated and compared:the first sample is the step-graded structure and the second one is the high Al structure as a comparison. By calculating full width at half maximum of XRD measurements, the densities of screw-type threading dislocations are 8.34×108 cm-2 and 11.44×108 cm-2 for step-graded structure and high Al structure, respectively, which are consistent with the results of atomic force microscopy. By Hall measurements, the measured two-dimensional electron gas mobility was 1820 cm2/(V·s) for step-graded structure, and 1300 cm2/(V·s) for high Al structure, respectively. The step-graded structure improves the crystal quality of AlGaN layer due to the released lattice strain. The device was fabricated and leakage current is only 28 μA when the drain voltage is 10 V; it was found that the InGaN back barrier could effectively reduce the buffer leakage current.

Key words: GaNHEMTback barrierstep-graded

Abstract: A novel InGaN back barrier high electron mobility transistors structure with a compositionally step-graded AlGaN barrier layer was grown by metal organic chemical vapor deposition on sapphire substrate. The structural and electrical properties of two samples were investigated and compared:the first sample is the step-graded structure and the second one is the high Al structure as a comparison. By calculating full width at half maximum of XRD measurements, the densities of screw-type threading dislocations are 8.34×108 cm-2 and 11.44×108 cm-2 for step-graded structure and high Al structure, respectively, which are consistent with the results of atomic force microscopy. By Hall measurements, the measured two-dimensional electron gas mobility was 1820 cm2/(V·s) for step-graded structure, and 1300 cm2/(V·s) for high Al structure, respectively. The step-graded structure improves the crystal quality of AlGaN layer due to the released lattice strain. The device was fabricated and leakage current is only 28 μA when the drain voltage is 10 V; it was found that the InGaN back barrier could effectively reduce the buffer leakage current.

Key words: GaNHEMTback barrierstep-graded



References:

[1]

Wang X L, Cheng T S, Xiao H L. An internally-matched GaN HEMTs device with 45.2 W at 8 GHz for X-band application[J]. Solid-State Electron, 2009, 53: 332. doi: 10.1016/j.sse.2009.01.003

[2]

Ren Chunjiang, Li Zhonghui, Yu Xuming. Field plated 0.15μm GaN HEMTs for millimeter-wave application[J]. Journal of Semiconductors, 2013, 34(6): 064002. doi: 10.1088/1674-4926/34/6/064002

[3]

Wang Jianhui, Wang Xinhua, Pan Lei. Effect of varying layouts on the gate temperature for multi-finger AlGaN/GaN HEMTs[J]. Journal of Semiconductors, 2012, 33(9): 094004. doi: 10.1088/1674-4926/33/9/094004

[4]

Zhang Renping, Yan Wei, Wang Xiaoliang. Fabrication and characterization of high performance AlGaN/GaN HEMTs on sapphire with silicon nitride passivation[J]. Journal of Semiconductors, 2011, 32(6): 064001. doi: 10.1088/1674-4926/32/6/064001

[5]

Manuel J M, Morales F M, Garcia R. Threading dislocation propagation in AlGaN/GaN based HEMT structures grown on Si (111) by plasma assisted molecular beam epitaxy[J]. J Cryst Growth, 2012, 357: 35. doi: 10.1016/j.jcrysgro.2012.07.037

[6]

Schuette M L, Ketterson A, Song B. Gate-recessed integrated E/D GaN HEMT technology with fT/fmax > 300 GHz[J]. IEEE Electron Device Lett, 2013, 34(6): 741. doi: 10.1109/LED.2013.2257657

[7]

Benyahya N, Mazari H, Benseddik N. Characterization and comparison between Ig(Vgs) structures HEMT AlInN/GaN and AlGaN/GaN[J]. Opt Quantum Electron, 2014, 46(1): 209. doi: 10.1007/s11082-013-9747-4

[8]

Palacios T, Chakraborty A, Heikman S. AlGaN/GaN high electron mobility transistors with InGaN back-barriers[J]. IEEE Electron Device Lett, 2006, 27: 13. doi: 10.1109/LED.2005.860882

[9]

Tang J, Wang X, Chen T. AlGaN/AlN/GaN/InGaN/GaN DH-HEMTs with improved mobility grown by MOCVD[J]. 9th International Conference on Solid-State and Integrated-Circuit Technology, ICSICT, 2008: 1114.

[10]

Shi Linyu, Zhang Jincheng, Wang Hao. Growth of InGaN and double heterojunction structure with InGaN back barrier[J]. Journal of Semiconductors, 2010, 31(12): 123001. doi: 10.1088/1674-4926/31/12/123001

[11]

Ma Z Y, Wang X L, Hu G X. Growth and characterization of AlGaN/AlN/GaN HEMT structures with a compositionally step-graded AlGaN barrier layer[J]. Chin Phys Lett, 2007, 24: 1705. doi: 10.1088/0256-307X/24/6/075

[12]

Moram M A, Vickers M E. X-ray diffraction of Ⅲ-nitrides[J]. Reports on Progress in Physics, 2009, 72: 036502. doi: 10.1088/0034-4885/72/3/036502

[13]

Lu L, Shen B, Xu F J. Morphology of threading dislocations in high-resistivity GaN films observed by transmission electron microscopy[J]. J Appl Phys, 2007, 102(3): 033510. doi: 10.1063/1.2768015

[14]

Srikant V, Speck J S, Clarke D R. Mosaic structure in epitaxial thin films having large lattice mismatch[J]. J Appl Phys, 1997, 82(9): 4286. doi: 10.1063/1.366235

[15]

Khoury M, Courville A, Poulet B. Imaging and counting threading dislocations in c-oriented epitaxial GaN layers[J]. Semicond Sci Technol, 2013, 28: 035006. doi: 10.1088/0268-1242/28/3/035006

[16]

Shen L, Heikman S, Moran B. AlGaN/AlN/GaN high-power microwave HEMT[J]. IEEE Electron Device Lett, 2001, 22: 457. doi: 10.1109/55.954910

[17]

Skierbiszewski C, Wasilewski Z, Siekacz M. Growth optimisation of the GaN layers and GaN/AlGaN heterojunctions on bulk GaN substrates using plasma-assisted molecular beam epitaxy[J]. Phys Status Solidi A, 2004, 201(2): 320. doi: 10.1002/(ISSN)1521-396X

[18]

Ran J X, Wang X L, Hu G X. Characteristics of InGaN channel HEMTs grown by MOCVD[J]. 8th International Conference on Solid-State and Integrated Circuit Technology, 2006, 2: 929.

[1]

Wang X L, Cheng T S, Xiao H L. An internally-matched GaN HEMTs device with 45.2 W at 8 GHz for X-band application[J]. Solid-State Electron, 2009, 53: 332. doi: 10.1016/j.sse.2009.01.003

[2]

Ren Chunjiang, Li Zhonghui, Yu Xuming. Field plated 0.15μm GaN HEMTs for millimeter-wave application[J]. Journal of Semiconductors, 2013, 34(6): 064002. doi: 10.1088/1674-4926/34/6/064002

[3]

Wang Jianhui, Wang Xinhua, Pan Lei. Effect of varying layouts on the gate temperature for multi-finger AlGaN/GaN HEMTs[J]. Journal of Semiconductors, 2012, 33(9): 094004. doi: 10.1088/1674-4926/33/9/094004

[4]

Zhang Renping, Yan Wei, Wang Xiaoliang. Fabrication and characterization of high performance AlGaN/GaN HEMTs on sapphire with silicon nitride passivation[J]. Journal of Semiconductors, 2011, 32(6): 064001. doi: 10.1088/1674-4926/32/6/064001

[5]

Manuel J M, Morales F M, Garcia R. Threading dislocation propagation in AlGaN/GaN based HEMT structures grown on Si (111) by plasma assisted molecular beam epitaxy[J]. J Cryst Growth, 2012, 357: 35. doi: 10.1016/j.jcrysgro.2012.07.037

[6]

Schuette M L, Ketterson A, Song B. Gate-recessed integrated E/D GaN HEMT technology with fT/fmax > 300 GHz[J]. IEEE Electron Device Lett, 2013, 34(6): 741. doi: 10.1109/LED.2013.2257657

[7]

Benyahya N, Mazari H, Benseddik N. Characterization and comparison between Ig(Vgs) structures HEMT AlInN/GaN and AlGaN/GaN[J]. Opt Quantum Electron, 2014, 46(1): 209. doi: 10.1007/s11082-013-9747-4

[8]

Palacios T, Chakraborty A, Heikman S. AlGaN/GaN high electron mobility transistors with InGaN back-barriers[J]. IEEE Electron Device Lett, 2006, 27: 13. doi: 10.1109/LED.2005.860882

[9]

Tang J, Wang X, Chen T. AlGaN/AlN/GaN/InGaN/GaN DH-HEMTs with improved mobility grown by MOCVD[J]. 9th International Conference on Solid-State and Integrated-Circuit Technology, ICSICT, 2008: 1114.

[10]

Shi Linyu, Zhang Jincheng, Wang Hao. Growth of InGaN and double heterojunction structure with InGaN back barrier[J]. Journal of Semiconductors, 2010, 31(12): 123001. doi: 10.1088/1674-4926/31/12/123001

[11]

Ma Z Y, Wang X L, Hu G X. Growth and characterization of AlGaN/AlN/GaN HEMT structures with a compositionally step-graded AlGaN barrier layer[J]. Chin Phys Lett, 2007, 24: 1705. doi: 10.1088/0256-307X/24/6/075

[12]

Moram M A, Vickers M E. X-ray diffraction of Ⅲ-nitrides[J]. Reports on Progress in Physics, 2009, 72: 036502. doi: 10.1088/0034-4885/72/3/036502

[13]

Lu L, Shen B, Xu F J. Morphology of threading dislocations in high-resistivity GaN films observed by transmission electron microscopy[J]. J Appl Phys, 2007, 102(3): 033510. doi: 10.1063/1.2768015

[14]

Srikant V, Speck J S, Clarke D R. Mosaic structure in epitaxial thin films having large lattice mismatch[J]. J Appl Phys, 1997, 82(9): 4286. doi: 10.1063/1.366235

[15]

Khoury M, Courville A, Poulet B. Imaging and counting threading dislocations in c-oriented epitaxial GaN layers[J]. Semicond Sci Technol, 2013, 28: 035006. doi: 10.1088/0268-1242/28/3/035006

[16]

Shen L, Heikman S, Moran B. AlGaN/AlN/GaN high-power microwave HEMT[J]. IEEE Electron Device Lett, 2001, 22: 457. doi: 10.1109/55.954910

[17]

Skierbiszewski C, Wasilewski Z, Siekacz M. Growth optimisation of the GaN layers and GaN/AlGaN heterojunctions on bulk GaN substrates using plasma-assisted molecular beam epitaxy[J]. Phys Status Solidi A, 2004, 201(2): 320. doi: 10.1002/(ISSN)1521-396X

[18]

Ran J X, Wang X L, Hu G X. Characteristics of InGaN channel HEMTs grown by MOCVD[J]. 8th International Conference on Solid-State and Integrated Circuit Technology, 2006, 2: 929.

[1]

Chunjiang Ren, Hongchang Shen, Zhonghui Li, Tangsheng Chen, Bin Zhang, Tao Gao. GaN HEMT with AlGaN back barrier for high power MMIC switch application. J. Semicond., 2015, 36(1): 014008. doi: 10.1088/1674-4926/36/1/014008

[2]

Chen Zhigang, Zhang Yang, Luo Weijun, Zhang Renping, Yang Fuhua, Wang Xiaoliang, Li Jinmin. A High Performance AlGaN/GaN HEMT with a New Method for T-Gate Layout Design. J. Semicond., 2008, 29(9): 1654.

[3]

Zeng Qingming, Li Xianjie, Zhou Zhou, Wang Yong, Wang Xiaoliang. Investigation of Undoped AlGaN/GaN Microwave Power HEMT. J. Semicond., 2005, 26(S1): 151.

[4]

A. Divay, O. Latry, C. Duperrier, F. Temcamani. Ageing of GaN HEMT devices:which degradation indicators?. J. Semicond., 2016, 37(1): 014001. doi: 10.1088/1674-4926/37/1/014001

[5]

Ma Zhiyong, Wang Xiaoliang, Hu Guoxin, Xiao Hongling, Wang Cuimei, Ran Junxue, Li Jianping. Preparation and Properties of AlGaN/AIN/GaN HEMTs with Compositionally Step-Graded AIGaN Barrier Layer. J. Semicond., 2007, 28(S1): 3944.

[6]

D.K. Panda, T.R. Lenka. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J. Semicond., 2017, 38(6): 064002. doi: 10.1088/1674-4926/38/6/064002

[7]

A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio. J. Semicond., 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

[8]

Yan Jianfeng, Zhang Jie, Guo Liwei, Zhu Xueliang, Peng Mingzeng, Jia Haiqiang, Chen Hong, Zhou Junming. Growth and Stress Analysis of a-Plane GaN Films Grown on r-Plane Sapphire Substrate with a Two-Step AlN Buffer Layer. J. Semicond., 2007, 28(10): 1562.

[9]

Zheng Yingkui, Liu Guoguo, He Zhijing, Liu Xinyu, Wu Dexin. 0.25μm Gate-Length AlGaN/GaN Power HEMTs on Sapphire with fT of 77GHz. J. Semicond., 2006, 27(6): 963.

[10]

Wang Xinhua, Wang Xiaoliang, Feng Chun, Ran Junxue, Xiao Hongling, Yang Cuibai, Wang Baozhu, Wang Junxi. Hydrogen Sensors Based on AlGaN/GaN Back-to-Back Schottky Diodes. J. Semicond., 2008, 29(1): 153.

[11]

Bi Yang, Wang Xiaoliang, Xiao Hongling, Wang Cuimei, Yang Cuibai, Peng Enchao, Lin Defeng, Feng Chun, Jiang Lijuan. Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure. J. Semicond., 2011, 32(8): 083003. doi: 10.1088/1674-4926/32/8/083003

[12]

Li Xianjie, Zeng Qingming, Zhou Zhou, Liu Yugui, Qiao Shuyun, Cai Daomin, Zhao Yonglin, Cai Shujun. AlGaN/GaN High Electron Mobility Transistors on Sapphires with fmax of 100GHz. J. Semicond., 2005, 26(11): 2049.

[13]

Chen Chen, Chen Tangsheng, Ren Chunjiang, Xue Fangshi. Characteristic of the Recessed-Gate AIGaN/GaN HEMT with a Field Plate. J. Semicond., 2007, 28(S1): 407.

[14]

Liu Guoguo, Zheng Yingkui, Wei Ke, Li Chengzhan, Liu Xinyu, He Zhijing. An 8W X Band AlGaN/GaN Power HEMT. J. Semicond., 2008, 29(7): 1354.

[15]

Wang Xiaoliang, Wang Cuimei, Hu Guoxin, Ma Zhiyong, Xiao Hongling, Ran Junxue, Luo Weijun, Tang Jian, Li Jianping, Li Jinmin, Wang Zhanguo. High Quality AIGaN/GaN HEMT Materials Grown on SiC Substrates. J. Semicond., 2007, 28(S1): 402.

[16]

Liang Huilai, Guo Weilian, Song Ruiliang, Qi Haitao, Zhang Shilin, Hu Liuchang, Li Jianheng, Mao Luhong, Shang Yuehui, Feng Zhen, Tian Guoping, Li Yali. Design and Fabrication of Resonant Tunneling Transistor with RTD/HEMT in Series Structure. J. Semicond., 2007, 28(10): 1594.

[17]

Huang Jie, Guo Tianyi, Zhang Haiying, Xu Jingbo, Fu Xiaojun, Yang Hao, Niu Jiebin. Fabrication of a 120 nm gate-length lattice-matched InGaAs/InAlAsInP-based HEMT. J. Semicond., 2010, 31(9): 094008. doi: 10.1088/1674-4926/31/9/094008

[18]

Wang Xiaoliang, Hu Guoxin, Ma Zhiyong, Xiao Hongling, Wang Cuimei, Luo Weijun, Liu Xinyu, Chen Xiaojuan, Li Jianping, Li Jinmin, Qian He, Wang Zhanguo. MOCVD-Grown AlGaN/AlN/GaN HEMT Structure with High Mobility GaN Thin Layer as Channel on SiC. J. Semicond., 2006, 27(9): 1521.

[19]

Yong Lei, Hai Lu. Influence of field plate on surface-state-related lag characteristics of AlGaN/GaN HEMT. J. Semicond., 2015, 36(7): 074007. doi: 10.1088/1674-4926/36/7/074007

[20]

Luo Weijun, Chen Xiaojuan, Li Chengzhan, Liu Xinyu, He Zhijing, Wei Ke, Liang Xiaoxin, Wang Xiaoliang. Fabrication of a High-Performance 1mm AlGaN/GaN HEMT on SiC Substrate. J. Semicond., 2006, 27(11): 1981.

Search

Advanced Search >>

GET CITATION

J Tang, X L Wang, H L Xiao. Growth and characterization of InGaN back barrier HEMTs structure with a compositionally step-graded AlGaN layer[J]. J. Semicond., 2014, 35(11): 113006. doi: 10.1088/1674-4926/35/11/113006.

Export: BibTex EndNote

Article Metrics

Article views: 809 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 05 March 2014 Manuscript revised: 05 May 2014 Online: Published: 01 November 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误