S B Rahi, B Ghosh, P Asthana. A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET[J]. J. Semicond., 2014, 35(11): 114005. doi: 10.1088/1674-4926/35/11/114005.
Shiromani Balmukund Rahi 1, , Bahniman Ghosh 2, , and Pranav Asthana 1,
Abstract: We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AlGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gate1) with two different work functions (gate=4.2 eV, gate1=5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4×10-6 A/μm, the off current remains as low as 9.1×10-14 A/μm. So ION/IOFF ratio of ≃ 108 is achieved. Point subthreshold swing has also been reduced to a value of ≃ 41 mV/decade for TiO2 gate material.
Key words: band-to-band tunneling (BTBT), TFET, heterostructure junctionless tunnel field effect transistor (HJL-TFET), ION/IOFF ratio subthreshold slope, VLSI
Abstract: We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AlGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gate1) with two different work functions (gate=4.2 eV, gate1=5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4×10-6 A/μm, the off current remains as low as 9.1×10-14 A/μm. So ION/IOFF ratio of ≃ 108 is achieved. Point subthreshold swing has also been reduced to a value of ≃ 41 mV/decade for TiO2 gate material.
Key words:
band-to-band tunneling (BTBT), TFET, heterostructure junctionless tunnel field effect transistor (HJL-TFET), ION/IOFF ratio subthreshold slope, VLSI
References:
[1] |
Kanungo S, Rahaman H, Gupta P S. A detail simulation study on extended source ultra-thin body double-gated tunnel FET[J]. IEEE 5th International Conference on Computers and Devices for Communication (CODEC), 2012. |
[2] |
Wang P Y, Tusi B Y. Si1-xGex epitaxial tunnel layer structure for P-channel tunnel FET improvement[J]. IEEE Trans Electron Devices, 2013, 60(12): 4098. doi: 10.1109/TED.2013.2287633 |
[3] |
Ganapathi K, Yoon Y, Salahuddin S. Analysis of InAs vertical and lateral band-to-band tunneling transistors:leveraging vertical tunneling for improved performance[J]. Appl Phys Lett, 2010, 97(3): 033504. doi: 10.1063/1.3466908 |
[4] |
Ionescu A M, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches[J]. Nature, 2011, 479: 329. doi: 10.1038/nature10679 |
[5] |
Mishra R, Ghosh B, Banarjee S K. Device and circuit performance evaluation and improvement of SiGe tunnel FETs[J]. IEEE International Conference on Enabling Science and Nanotechnology (ESciNano), 2011. |
[6] |
Mamilla B K, Naiyar S, Mishra R. A Ⅲ-Ⅴ group tunnel FETs with good switching characteristics and their circuit performance[J]. International Journal of Electronics Communication and Computer Technology, 2011, 1(2): 26. |
[7] |
Ghosh B, Akram M W. Junctionless tunnel field effect transistor[J]. IEEE Electron Device Lett, 2013, 34(5): 584. doi: 10.1109/LED.2013.2253752 |
[8] |
Bal P, Akram M W, Mondal P. Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET)[J]. J Comput Electron, 2013, 12: 782. doi: 10.1007/s10825-013-0483-6 |
[9] |
Asthana P K, Ghosh B, Goswami Y. High speed and low power ultra-deep-submicron Ⅲ-Ⅴ hetero-junctionless tunnel field effect transistor[J]. IEEE Trans Electron Devices, 2014, 61(2): 479. doi: 10.1109/TED.2013.2295238 |
[10] |
Colinge J P, Lee C W, Afzalian A. Nanowire transistors without junctions[J]. Nature Nanotechnol, 2010, 5(3): 225. doi: 10.1038/nnano.2010.15 |
[11] |
Lee C W, Afzalian A, Akhavan N D. Junctionless multigate field-effect transistor[J]. Appl Phys Lett, 2009, 94(5): 053511. doi: 10.1063/1.3079411 |
[12] |
Mandol P, Ghosh B, Bal P. Planner junctionless transistor with non-uniform channel doping[J]. Appl Phys Lett, 2013, 102: 133505. doi: 10.1063/1.4801443 |
[13] |
http://www.silvaco.com. accessed on 27 July, 2013 |
[14] |
Silvaco (Atlas) User manual, 19 December 2013 |
[15] |
Hansch W, Vogelsang T, Kirchner R. Carrier transport near the Si/SiO2 interface of a MOSFET[J]. Solid-State Electron, 1989, 32(10): 839. doi: 10.1016/0038-1101(89)90060-9 |
[16] |
Kranti A, Lee C W, Ferain I. Junctionless nanowire transistor:properties and design guidelines[J]. Proc 34th IEEE Eur Solid-State Device Res Conf, 2010: 357. |
[17] |
Choi S J, Moon D I, Kim S. Nonvolatile memory by all-around-gate junctionless transistor composed of silicon nanowire on bulk substrate[J]. IEEE Electron Device Lett, 2011, 32(5): 602. doi: 10.1109/LED.2011.2118734 |
[18] |
Lee C W, Yan R, Ferain I. Nanowire zero-capacitor DRAM transistors with and without junctions[J]. Proc 10th IEEE-NANO, 2010: 242. |
[19] |
Lattanzio L, De Micheielis L, Biswas A. Abrupt switch based on internally combined band-to-band-and barrier tunneling mechanisms[J]. IEEE Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2010. |
[20] |
Boucart K, Ionescu A M. Double gate tunnel FET high k gate dielectric[J]. IEEE Trans Electron Devices, 2007, 54(7): 1725. doi: 10.1109/TED.2007.899389 |
[21] |
Razavi P, Orouji A A. Dual material gate oxide stack symmetric double gate MOSFETs:improving short channel effects of nanoscale double gate MOSFET[J]. IEEE 11th International Biennial Baltic Electronics Conference, 2008. |
[22] |
Kranti A, Lee C, Ferain I. Junctionless 6T SRAM cell[J]. IET Electron Lett, 2010, 46(22): 1491. doi: 10.1049/el.2010.2736 |
[23] |
Bjork M T, Knoch J, Schmid H. Silicon nanowire tunneling field-effect transistors[J]. Appl Phys Lett, 2008, 92(19): 193504. doi: 10.1063/1.2928227 |
[24] |
Hinkle C L, Sonnet A M, Vogel E M. GaAs interfacial self-cleaning by atomic layer deposition[J]. Appl Phys Lett, 2008, 92: 071901. doi: 10.1063/1.2883956 |
[25] |
Passlack M, Hong M, Mannaerts J P. In-situ Ga2O3 process for GaAs inversion/accumulation device and surface passivation applications[J]. IEEE Int Electron Devices Meeting, 1995: 383. |
[26] |
Holtij T, Schwarz M, Graef M. Model for investigation of Ion/Ioff ratios in short-channel junction less double gate MOSFET[J]. IEEE, 2013. |
[27] |
Kim D, Krishnamohan T, Smith L. Band to band tunneling study in high mobility material:Ⅲ-Ⅴ Si, Ge, and strained SiGe[J]. IEEE 65th Annual Device Research Conference, 2007. |
[28] |
Taur Y. An analytical solution to a double-gate MOSFET with undoped body[J]. IEEE Electron Device Lett, 2000, 21(5): 245. doi: 10.1109/55.841310 |
[29] |
Goswami Y, Tripathi B M, Pranav A. Junctionless tunnel field effect transistor with enhanced performance using Ⅲ-Ⅴ semiconductor[J]. Journal of Low Power Electronics, 2013, 9: 496. doi: 10.1166/jolpe.2013.1281 |
[30] |
Goswami Y, Ghosh B, Asthana P K. Analog performance of Si junctionless tunnel field effect transistor and its improvisation using Ⅲ-Ⅴ semiconductor[J]. RSC Adv, 2014, 4: 10761. doi: 10.1039/c3ra46535g |
[1] |
Kanungo S, Rahaman H, Gupta P S. A detail simulation study on extended source ultra-thin body double-gated tunnel FET[J]. IEEE 5th International Conference on Computers and Devices for Communication (CODEC), 2012. |
[2] |
Wang P Y, Tusi B Y. Si1-xGex epitaxial tunnel layer structure for P-channel tunnel FET improvement[J]. IEEE Trans Electron Devices, 2013, 60(12): 4098. doi: 10.1109/TED.2013.2287633 |
[3] |
Ganapathi K, Yoon Y, Salahuddin S. Analysis of InAs vertical and lateral band-to-band tunneling transistors:leveraging vertical tunneling for improved performance[J]. Appl Phys Lett, 2010, 97(3): 033504. doi: 10.1063/1.3466908 |
[4] |
Ionescu A M, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches[J]. Nature, 2011, 479: 329. doi: 10.1038/nature10679 |
[5] |
Mishra R, Ghosh B, Banarjee S K. Device and circuit performance evaluation and improvement of SiGe tunnel FETs[J]. IEEE International Conference on Enabling Science and Nanotechnology (ESciNano), 2011. |
[6] |
Mamilla B K, Naiyar S, Mishra R. A Ⅲ-Ⅴ group tunnel FETs with good switching characteristics and their circuit performance[J]. International Journal of Electronics Communication and Computer Technology, 2011, 1(2): 26. |
[7] |
Ghosh B, Akram M W. Junctionless tunnel field effect transistor[J]. IEEE Electron Device Lett, 2013, 34(5): 584. doi: 10.1109/LED.2013.2253752 |
[8] |
Bal P, Akram M W, Mondal P. Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET)[J]. J Comput Electron, 2013, 12: 782. doi: 10.1007/s10825-013-0483-6 |
[9] |
Asthana P K, Ghosh B, Goswami Y. High speed and low power ultra-deep-submicron Ⅲ-Ⅴ hetero-junctionless tunnel field effect transistor[J]. IEEE Trans Electron Devices, 2014, 61(2): 479. doi: 10.1109/TED.2013.2295238 |
[10] |
Colinge J P, Lee C W, Afzalian A. Nanowire transistors without junctions[J]. Nature Nanotechnol, 2010, 5(3): 225. doi: 10.1038/nnano.2010.15 |
[11] |
Lee C W, Afzalian A, Akhavan N D. Junctionless multigate field-effect transistor[J]. Appl Phys Lett, 2009, 94(5): 053511. doi: 10.1063/1.3079411 |
[12] |
Mandol P, Ghosh B, Bal P. Planner junctionless transistor with non-uniform channel doping[J]. Appl Phys Lett, 2013, 102: 133505. doi: 10.1063/1.4801443 |
[13] |
http://www.silvaco.com. accessed on 27 July, 2013 |
[14] |
Silvaco (Atlas) User manual, 19 December 2013 |
[15] |
Hansch W, Vogelsang T, Kirchner R. Carrier transport near the Si/SiO2 interface of a MOSFET[J]. Solid-State Electron, 1989, 32(10): 839. doi: 10.1016/0038-1101(89)90060-9 |
[16] |
Kranti A, Lee C W, Ferain I. Junctionless nanowire transistor:properties and design guidelines[J]. Proc 34th IEEE Eur Solid-State Device Res Conf, 2010: 357. |
[17] |
Choi S J, Moon D I, Kim S. Nonvolatile memory by all-around-gate junctionless transistor composed of silicon nanowire on bulk substrate[J]. IEEE Electron Device Lett, 2011, 32(5): 602. doi: 10.1109/LED.2011.2118734 |
[18] |
Lee C W, Yan R, Ferain I. Nanowire zero-capacitor DRAM transistors with and without junctions[J]. Proc 10th IEEE-NANO, 2010: 242. |
[19] |
Lattanzio L, De Micheielis L, Biswas A. Abrupt switch based on internally combined band-to-band-and barrier tunneling mechanisms[J]. IEEE Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2010. |
[20] |
Boucart K, Ionescu A M. Double gate tunnel FET high k gate dielectric[J]. IEEE Trans Electron Devices, 2007, 54(7): 1725. doi: 10.1109/TED.2007.899389 |
[21] |
Razavi P, Orouji A A. Dual material gate oxide stack symmetric double gate MOSFETs:improving short channel effects of nanoscale double gate MOSFET[J]. IEEE 11th International Biennial Baltic Electronics Conference, 2008. |
[22] |
Kranti A, Lee C, Ferain I. Junctionless 6T SRAM cell[J]. IET Electron Lett, 2010, 46(22): 1491. doi: 10.1049/el.2010.2736 |
[23] |
Bjork M T, Knoch J, Schmid H. Silicon nanowire tunneling field-effect transistors[J]. Appl Phys Lett, 2008, 92(19): 193504. doi: 10.1063/1.2928227 |
[24] |
Hinkle C L, Sonnet A M, Vogel E M. GaAs interfacial self-cleaning by atomic layer deposition[J]. Appl Phys Lett, 2008, 92: 071901. doi: 10.1063/1.2883956 |
[25] |
Passlack M, Hong M, Mannaerts J P. In-situ Ga2O3 process for GaAs inversion/accumulation device and surface passivation applications[J]. IEEE Int Electron Devices Meeting, 1995: 383. |
[26] |
Holtij T, Schwarz M, Graef M. Model for investigation of Ion/Ioff ratios in short-channel junction less double gate MOSFET[J]. IEEE, 2013. |
[27] |
Kim D, Krishnamohan T, Smith L. Band to band tunneling study in high mobility material:Ⅲ-Ⅴ Si, Ge, and strained SiGe[J]. IEEE 65th Annual Device Research Conference, 2007. |
[28] |
Taur Y. An analytical solution to a double-gate MOSFET with undoped body[J]. IEEE Electron Device Lett, 2000, 21(5): 245. doi: 10.1109/55.841310 |
[29] |
Goswami Y, Tripathi B M, Pranav A. Junctionless tunnel field effect transistor with enhanced performance using Ⅲ-Ⅴ semiconductor[J]. Journal of Low Power Electronics, 2013, 9: 496. doi: 10.1166/jolpe.2013.1281 |
[30] |
Goswami Y, Ghosh B, Asthana P K. Analog performance of Si junctionless tunnel field effect transistor and its improvisation using Ⅲ-Ⅴ semiconductor[J]. RSC Adv, 2014, 4: 10761. doi: 10.1039/c3ra46535g |
S B Rahi, B Ghosh, P Asthana. A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET[J]. J. Semicond., 2014, 35(11): 114005. doi: 10.1088/1674-4926/35/11/114005.
Article views: 632 Times PDF downloads: 6 Times Cited by: 0 Times
Manuscript received: 31 January 2014 Manuscript revised: 29 May 2014 Online: Published: 01 November 2014
Journal of Semiconductors © 2017 All Rights Reserved