J. Semicond. > Volume 35 > Issue 11 > Article Number: 115002

A low-power CMOS smart temperature sensor for RFID application

Liangbo Xie , , Jiaxin Liu , Yao Wang and Guangjun Wen

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper presents the design and implement of a CMOS smart temperature sensor, which consists of a low power analog front-end and a 12-bit low-power successive approximation register (SAR) analog-to-digital converter (ADC). The analog front-end generates a proportional-to-absolute-temperature (PTAT) voltage with MOSFET circuits operating in the sub-threshold region. A reference voltage is also generated and optimized in order to minimize the temperature error and the 12-bit SAR ADC is used to digitize the PTAT voltage. Using 0.18 μm CMOS technology, measurement results show that the temperature error is -0.69/+0.85℃ after one-point calibration over a temperature range of -40 to 100℃. Under a conversion speed of 1K samples/s, the power consumption is only 2.02 μW while the chip area is 230×225 μm2, and it is suitable for RFID application.

Key words: CMOSlow powertemperature sensorsub-thresholdSAR ADC

Abstract: This paper presents the design and implement of a CMOS smart temperature sensor, which consists of a low power analog front-end and a 12-bit low-power successive approximation register (SAR) analog-to-digital converter (ADC). The analog front-end generates a proportional-to-absolute-temperature (PTAT) voltage with MOSFET circuits operating in the sub-threshold region. A reference voltage is also generated and optimized in order to minimize the temperature error and the 12-bit SAR ADC is used to digitize the PTAT voltage. Using 0.18 μm CMOS technology, measurement results show that the temperature error is -0.69/+0.85℃ after one-point calibration over a temperature range of -40 to 100℃. Under a conversion speed of 1K samples/s, the power consumption is only 2.02 μW while the chip area is 230×225 μm2, and it is suitable for RFID application.

Key words: CMOSlow powertemperature sensorsub-thresholdSAR ADC



References:

[1]

Yin J, Yi J, Law M K. A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor[J]. IEEE J Solid-State Circuits, 2010, 45(11): 2404.

[2]

Law M K, Bermak A, Luong H C. A sub-W embedded CMOS temperature sensor for RFID food monitoring application[J]. IEEE J Solid-State Circuits, 2010, 45(6): 1246. doi: 10.1109/JSSC.2010.2047456

[3]

Pertijs M A P, Niederkorn A, Ma X. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5℃ from -50℃ to 120℃[J]. IEEE J Solid-State Circuits, 2005, 40(2): 454. doi: 10.1109/JSSC.2004.841013

[4]

Sebastiano F, Breems L J, Makinwa K A A. A 1.2-V 10-W NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2℃ (3σ) from -70℃ to 125℃[J]. IEEE J Solid-State Circuits, 2010, 45(12): 2591. doi: 10.1109/JSSC.2010.2076610

[5]

Souri K, Chae Y, Makinwa K A A. A CMOS temperature sensor with a voltage-calibrated inaccuracy of 0.15℃ (3σ) from 55℃ to 125℃[J]. IEEE J Solid-State Circuits, 2013, 48(1): 292. doi: 10.1109/JSSC.2012.2214831

[6]

Feng Peng, Zhang Qi, Wu Nanjian. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18μm standard CMOS process[J]. Journal of Semiconductors, 2011, 32(11): 115013. doi: 10.1088/1674-4926/32/11/115013

[7]

Chen P, Chen C C, Tsai C C. A time-to-digital-converter-based CMOS smart temperature sensor[J]. IEEE J Solid-State Circuits, 2005, 40(8): 1642. doi: 10.1109/JSSC.2005.852041

[8]

Chen P, Chen C C, Chen T K. A time domain mixed-mode temperature sensor with digital set-point programming[J]. IEEE Custom Integrated Circuits Conference, 2006: 821.

[9]

Chen P, Chen C C, Peng Y H. A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of -0.4℃ +0.6℃ over a 0℃ to 90℃ range[J]. IEEE J Solid-State Circuits, 2010, 45(3): 600. doi: 10.1109/JSSC.2010.2040658

[10]

Sahafi A, Sobhi J, Koozehkanani Z D. Nano watt CMOS temperature sensor[J]. Analog Integrated Circuits and Signal Processing, 2013, 75(3): 343. doi: 10.1007/s10470-013-0046-6

[11]

Ueno K, Hirose T, Asai T. A 300 nW, 15 ppm/℃, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs[J]. IEEE J Solid-State Circuits, 2009, 44(7): 2047. doi: 10.1109/JSSC.2009.2021922

[1]

Yin J, Yi J, Law M K. A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor[J]. IEEE J Solid-State Circuits, 2010, 45(11): 2404.

[2]

Law M K, Bermak A, Luong H C. A sub-W embedded CMOS temperature sensor for RFID food monitoring application[J]. IEEE J Solid-State Circuits, 2010, 45(6): 1246. doi: 10.1109/JSSC.2010.2047456

[3]

Pertijs M A P, Niederkorn A, Ma X. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5℃ from -50℃ to 120℃[J]. IEEE J Solid-State Circuits, 2005, 40(2): 454. doi: 10.1109/JSSC.2004.841013

[4]

Sebastiano F, Breems L J, Makinwa K A A. A 1.2-V 10-W NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2℃ (3σ) from -70℃ to 125℃[J]. IEEE J Solid-State Circuits, 2010, 45(12): 2591. doi: 10.1109/JSSC.2010.2076610

[5]

Souri K, Chae Y, Makinwa K A A. A CMOS temperature sensor with a voltage-calibrated inaccuracy of 0.15℃ (3σ) from 55℃ to 125℃[J]. IEEE J Solid-State Circuits, 2013, 48(1): 292. doi: 10.1109/JSSC.2012.2214831

[6]

Feng Peng, Zhang Qi, Wu Nanjian. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18μm standard CMOS process[J]. Journal of Semiconductors, 2011, 32(11): 115013. doi: 10.1088/1674-4926/32/11/115013

[7]

Chen P, Chen C C, Tsai C C. A time-to-digital-converter-based CMOS smart temperature sensor[J]. IEEE J Solid-State Circuits, 2005, 40(8): 1642. doi: 10.1109/JSSC.2005.852041

[8]

Chen P, Chen C C, Chen T K. A time domain mixed-mode temperature sensor with digital set-point programming[J]. IEEE Custom Integrated Circuits Conference, 2006: 821.

[9]

Chen P, Chen C C, Peng Y H. A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of -0.4℃ +0.6℃ over a 0℃ to 90℃ range[J]. IEEE J Solid-State Circuits, 2010, 45(3): 600. doi: 10.1109/JSSC.2010.2040658

[10]

Sahafi A, Sobhi J, Koozehkanani Z D. Nano watt CMOS temperature sensor[J]. Analog Integrated Circuits and Signal Processing, 2013, 75(3): 343. doi: 10.1007/s10470-013-0046-6

[11]

Ueno K, Hirose T, Asai T. A 300 nW, 15 ppm/℃, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs[J]. IEEE J Solid-State Circuits, 2009, 44(7): 2047. doi: 10.1109/JSSC.2009.2021922

[1]

Yang Miao, Sun Weifeng, Xu Shen, Wang Yifeng, Lu Shengli. A 140 mV 0.8 μA CMOS voltage reference based on sub-threshold MOSFETs. J. Semicond., 2011, 32(11): 115011. doi: 10.1088/1674-4926/32/11/115011

[2]

Hui Hong, Shiliang Li, Tao Zhou. Design of a low power 10 bit 300 ksps multi-channel SAR ADC for wireless sensor network applications. J. Semicond., 2015, 36(4): 045009. doi: 10.1088/1674-4926/36/4/045009

[3]

Mingyuan Yu, Ting Li, Jiaqi Yang, Shuangshuang Zhang, Fujiang Lin, Lin He. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process. J. Semicond., 2016, 37(7): 075005. doi: 10.1088/1674-4926/37/7/075005

[4]

Zhang Xun, Wang Peng, Jin Dongming. Temperature Sensors Based on CMOS Sub-Threshold Characteristic. J. Semicond., 2006, 27(9): 1676.

[5]

Li Wenyuan, Wang Zhigong, . Low-Power CMOS IC for Function Electrical Stimulation of Nerves. J. Semicond., 2007, 28(3): 393.

[6]

Jingjing Wang, Zemin Feng, Rongjin Xu, Chixiao Chen, Fan Ye, Jun Xu, Junyan Ren. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array. J. Semicond., 2016, 37(5): 055003. doi: 10.1088/1674-4926/37/5/055003

[7]

Yan Song, Zhongming Xue, Pengcheng Yan, Jueying Zhang, Li Geng. A 0.6-V 8.3-ENOB asynchronous SAR ADC for biomedical applications. J. Semicond., 2014, 35(8): 085007. doi: 10.1088/1674-4926/35/8/085007

[8]

Fubin Xin, Tao Yin, Qisong Wu, Yuanlong Yang, Fei Liu, Haigang Yang. A low power 12-bit 1 Msps successive approximation register ADC with an improved switching procedure. J. Semicond., 2015, 36(8): 085007. doi: 10.1088/1674-4926/36/8/085007

[9]

Zhang Xun, Wang Peng, Jin Dongming. A New Type of CMOS Temperature Sensor. J. Semicond., 2005, 26(11): 2202.

[10]

Feng Peng, Zhang Qi, Wu Nanjian. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18 μm standard CMOS process. J. Semicond., 2011, 32(11): 115013. doi: 10.1088/1674-4926/32/11/115013

[11]

Beichen Zhang, Bingbing Yao, Liyuan Liu, Jian Liu, Nanjian Wu. High power-efficient asynchronous SAR ADC for IoT devices. J. Semicond., 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001

[12]

Tie Meng, Cheng Xu. A cross-coupled-structure-based temperature sensor with reduced process variation sensitivity. J. Semicond., 2009, 30(4): 045002. doi: 10.1088/1674-4926/30/4/045002

[13]

Zhu Zhangming, Yang Yintang. A CMOS Flyback PWM Controller with Low No-Load Power Consumption. J. Semicond., 2008, 29(11): 2275.

[14]

Lin Saihua, Yang Huazhong. Design of a Novel All-CMOS Built-In Temperature Sensor. J. Semicond., 2006, 27(3): 551.

[15]

Najam Muhammad Amin, Zhigong Wang, Zhiqun Li, Qin Li, Yang Liu. A low power, low noise figure quadrature demodulator for a 60 GHz receiver in 65-nm CMOS technology. J. Semicond., 2015, 36(4): 045005. doi: 10.1088/1674-4926/36/4/045005

[16]

Dong Li, Qiao Meng, Fei Li. A 10 bit 50 MS/s SAR ADC with partial split capacitor switching scheme in 0.18 μm CMOS. J. Semicond., 2016, 37(1): 015004. doi: 10.1088/1674-4926/37/1/015004

[17]

Yuxiao Lu, Lu Sun, Zhe Li, Jianjun Zhou. A single-channel 10-bit 160 MS/s SAR ADC in 65 nm CMOS. J. Semicond., 2014, 35(4): 045009. doi: 10.1088/1674-4926/35/4/045009

[18]

Li Xuechu, Gao Qingyun, Qin Shicai. A Low-Power High-Frequency CMOS Peak Detector. J. Semicond., 2006, 27(10): 1707.

[19]

Zhang Fengtian, Tang Zhen'an, Wang Jiaqi, Yu Jun. A Monolithic Integrated CMOS Thermal Vacuum Sensor. J. Semicond., 2008, 29(6): 1103.

[20]

Wei Lü, Duona Luo, Fengcheng Mei, Jiaqi Yang, Libin Yao, Lin He, Fujiang Lin. A 0.6 V 10 bit 1 MS/s monotonic switching SAR ADC with common mode stabilizer in 0.13 μm CMOS. J. Semicond., 2014, 35(5): 055006. doi: 10.1088/1674-4926/35/5/055006

Search

Advanced Search >>

GET CITATION

L B Xie, J X Liu, Y Wang, G J Wen. A low-power CMOS smart temperature sensor for RFID application[J]. J. Semicond., 2014, 35(11): 115002. doi: 10.1088/1674-4926/35/11/115002.

Export: BibTex EndNote

Article Metrics

Article views: 800 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 23 March 2014 Manuscript revised: 23 June 2014 Online: Published: 01 November 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误