J. Semicond. > Volume 35 > Issue 12 > Article Number: 122002

First principles calculations of electronic and optical properties of GaN1-xBix alloys

Yingce Yan 1, , , Qi Wang 2, and Huifang Ma 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The electronic and optical properties of the ternary GaN1-xBix alloys in the zinc-blende structure are theoretically investigated by first principles calculations. Geometric optimization is performed before all the simulations to get accurate results. The band gaps of the alloys are found to be direct even with x=6.25%, and would become smaller when increasing the Bi compositions. The decrease ratio of band gaps is approximately 227 meV when 1% of N is replaced by Bi in the range of x=0-6.25%. Meanwhile, the absorption coefficient is shown to be significantly changed induced by the incorporation of Bi. These interesting properties indicate that GaN1-xBix alloys could be a promising candidate in future optoelectronic applications.

Key words: GaNBidensity functional calculationelectronic structuresoptical properties

Abstract: The electronic and optical properties of the ternary GaN1-xBix alloys in the zinc-blende structure are theoretically investigated by first principles calculations. Geometric optimization is performed before all the simulations to get accurate results. The band gaps of the alloys are found to be direct even with x=6.25%, and would become smaller when increasing the Bi compositions. The decrease ratio of band gaps is approximately 227 meV when 1% of N is replaced by Bi in the range of x=0-6.25%. Meanwhile, the absorption coefficient is shown to be significantly changed induced by the incorporation of Bi. These interesting properties indicate that GaN1-xBix alloys could be a promising candidate in future optoelectronic applications.

Key words: GaNBidensity functional calculationelectronic structuresoptical properties



References:

[1]

Pettinari G, Polimeni A, Capizzi M. Influence of bismuth incorporation on the valence and conduction band edges of GaAs1-xBix[J]. Appl Phys Lett, 2008, 92: 262105. doi: 10.1063/1.2953176

[2]

Walukiewicz W, Shan W, Yu K M. Interaction of localized electronic states with the conduction band:band anticrossing in Ⅱ-Ⅵ semiconductor ternaries[J]. Phys Rev Lett, 2000, 85: 1552. doi: 10.1103/PhysRevLett.85.1552

[3]

Cooke D G, Hegmann F A, Young E C. Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy[J]. Appl Phys Lett, 2006, 89: 12213.

[4]

Levander A X, Yu K M, Novikov S V. GaAs1-xBix:extremely mismatched semiconductor alloys[J]. Appl Phys Lett, 2010, 97: 141919. doi: 10.1063/1.3499753

[5]

Levander A X, Novikov S V, Liliental-Weber Z. Growth and transport properties of p-type GaNBi alloys[J]. J Mater Research, 2011, 26(23): 2887. doi: 10.1557/jmr.2011.376

[6]

Alberi K, Wu J, Walukiewicz W. Valence-band anticrossing in mismatched Ⅲ-Ⅴ semiconductor alloys[J]. Phys Rev B, 2007, 75: 045203.

[7]

Pacebutas V, Bertulis K, Aleksejenko G. Molecular-beam-epitaxy grown GaBiAs for terahertz optoelectronic applications[J]. J Mater Sci:Mater Electron, 2009, 20: 363. doi: 10.1007/s10854-008-9625-1

[8]

Mohmad A R, Bastiman F, Ng J S. Photoluminescence investigation of high quality GaAs1-xBix on GaAs[J]. Appl Phys Lett, 2011, 98: 122107. doi: 10.1063/1.3565244

[9]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev A, 1965, 140: 1133. doi: 10.1103/PhysRev.140.A1133

[10]

Furthmuller J, Kachell P, Bechstedt F. Extreme softening of Vanderbilt pseudopotentials:general rules and case studies of first-row and d-electron elements[J]. Phys Rev B, 2000, 61: 4576M.

[11]

Segall D, Lindan P J D, Probert M J. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys:Condens Matter, 2002, 14: 2717. doi: 10.1088/0953-8984/14/11/301

[12]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13: 5188. doi: 10.1103/PhysRevB.13.5188

[13]

Mordecai A. Nonlinear programming:analysis and methods. 3rd ed. New York: Dover, 2003

[14]

Leszczynski M, Teisseyre H, Suski T. Lattice parameters of gallium nitride[J]. Appl Phys Lett, 1996, 69: 73. doi: 10.1063/1.118123

[15]

Alberi K, Wu J, Walukiewicz W. Valence-band anticrossing in mismatched Ⅲ-Ⅴ semiconductor alloys[J]. Phys Rev B, 2007, 75: 045203.

[16]

Usman M, Broderick C A, Lindsaym A. Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs[J]. Phys Rev B, 2011, 84: 245202. doi: 10.1103/PhysRevB.84.245202

[17]

Feneberg M, Roppischer M, Cobet C. Optical properties of cubic GaN from 1 to 20 eV[J]. Phys Rev B, 2012, 85: 155207. doi: 10.1103/PhysRevB.85.155207

[1]

Pettinari G, Polimeni A, Capizzi M. Influence of bismuth incorporation on the valence and conduction band edges of GaAs1-xBix[J]. Appl Phys Lett, 2008, 92: 262105. doi: 10.1063/1.2953176

[2]

Walukiewicz W, Shan W, Yu K M. Interaction of localized electronic states with the conduction band:band anticrossing in Ⅱ-Ⅵ semiconductor ternaries[J]. Phys Rev Lett, 2000, 85: 1552. doi: 10.1103/PhysRevLett.85.1552

[3]

Cooke D G, Hegmann F A, Young E C. Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy[J]. Appl Phys Lett, 2006, 89: 12213.

[4]

Levander A X, Yu K M, Novikov S V. GaAs1-xBix:extremely mismatched semiconductor alloys[J]. Appl Phys Lett, 2010, 97: 141919. doi: 10.1063/1.3499753

[5]

Levander A X, Novikov S V, Liliental-Weber Z. Growth and transport properties of p-type GaNBi alloys[J]. J Mater Research, 2011, 26(23): 2887. doi: 10.1557/jmr.2011.376

[6]

Alberi K, Wu J, Walukiewicz W. Valence-band anticrossing in mismatched Ⅲ-Ⅴ semiconductor alloys[J]. Phys Rev B, 2007, 75: 045203.

[7]

Pacebutas V, Bertulis K, Aleksejenko G. Molecular-beam-epitaxy grown GaBiAs for terahertz optoelectronic applications[J]. J Mater Sci:Mater Electron, 2009, 20: 363. doi: 10.1007/s10854-008-9625-1

[8]

Mohmad A R, Bastiman F, Ng J S. Photoluminescence investigation of high quality GaAs1-xBix on GaAs[J]. Appl Phys Lett, 2011, 98: 122107. doi: 10.1063/1.3565244

[9]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev A, 1965, 140: 1133. doi: 10.1103/PhysRev.140.A1133

[10]

Furthmuller J, Kachell P, Bechstedt F. Extreme softening of Vanderbilt pseudopotentials:general rules and case studies of first-row and d-electron elements[J]. Phys Rev B, 2000, 61: 4576M.

[11]

Segall D, Lindan P J D, Probert M J. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys:Condens Matter, 2002, 14: 2717. doi: 10.1088/0953-8984/14/11/301

[12]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13: 5188. doi: 10.1103/PhysRevB.13.5188

[13]

Mordecai A. Nonlinear programming:analysis and methods. 3rd ed. New York: Dover, 2003

[14]

Leszczynski M, Teisseyre H, Suski T. Lattice parameters of gallium nitride[J]. Appl Phys Lett, 1996, 69: 73. doi: 10.1063/1.118123

[15]

Alberi K, Wu J, Walukiewicz W. Valence-band anticrossing in mismatched Ⅲ-Ⅴ semiconductor alloys[J]. Phys Rev B, 2007, 75: 045203.

[16]

Usman M, Broderick C A, Lindsaym A. Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs[J]. Phys Rev B, 2011, 84: 245202. doi: 10.1103/PhysRevB.84.245202

[17]

Feneberg M, Roppischer M, Cobet C. Optical properties of cubic GaN from 1 to 20 eV[J]. Phys Rev B, 2012, 85: 155207. doi: 10.1103/PhysRevB.85.155207

[1]

Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

[2]

Zuo Chunying, Wen Jing, Zhong Cheng. First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO. J. Semicond., 2012, 33(7): 072001. doi: 10.1088/1674-4926/33/7/072001

[3]

Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003

[4]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[5]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[6]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[7]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[8]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[9]

Zongyan Zhao, Dacheng Zhou, Juan Yi. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations. J. Semicond., 2014, 35(1): 013002. doi: 10.1088/1674-4926/35/1/013002

[10]

Peijiang Niu, Jinliang Yan, Delan Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004

[11]

J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films. J. Semicond., 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002

[12]

Yao Zhaohui, Chen Tingjin, Xia Chaofeng, Yuan Hairong, Liu Zuming, Liao Hua, Wang Fan. Structural and Optical Properties of CdTe Thin Films on Glass Grown by Hot Wall Vacuum Deposition. J. Semicond., 2006, 27(7): 1236.

[13]

Wang Li, Pu Yong, Fang Wenqing, Mo Chunlan, Xiong Chuanbing, Jiang Fengyi. Effect of Surface-Covered Annealing on the Optical Properties of ZnO Films Grown by MOCVD. J. Semicond., 2003, 24(3): 409.

[14]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[15]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[16]

Fuxue Wang, Xiaolong Cai, Dawei Yan, Zhaomin Zhu, Xiaofeng Gu. Luminescence properties of tetrapod ZnO nanostructures. J. Semicond., 2014, 35(6): 063004. doi: 10.1088/1674-4926/35/6/063004

[17]

Muhammad Tariq Saeed Chani, Sher Bahadar Khan, Kh. S. Karimov, M. Abid, Abdullah M. Asiri, Kalsoom Akhtar. Synthesis of metal oxide composite nanosheets and their pressure sensing properties. J. Semicond., 2015, 36(2): 023002. doi: 10.1088/1674-4926/36/2/023002

[18]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[19]

P Mallika Bramaramba Devi, G. Phaneendra Reddy, K. T. Ramakrishna Reddy. Structural and optical studies on PVA capped SnS films grown by chemical bath deposition for solar cell application. J. Semicond., 2019, 40(5): 052101. doi: 10.1088/1674-4926/40/5/052101

[20]

M. Mousavi, A. Kompany, N. Shahtahmasebi, M.M. Bagheri-Mohagheghi. The effect of solution concentration on the physical and electrochemical properties of vanadium oxide films deposited by spray pyrolysis. J. Semicond., 2013, 34(10): 103001. doi: 10.1088/1674-4926/34/10/103001

Search

Advanced Search >>

GET CITATION

Y C Yan, Q Wang, H F Ma. First principles calculations of electronic and optical properties of GaN1-xBix alloys[J]. J. Semicond., 2014, 35(12): 122002. doi: 10.1088/1674-4926/35/12/122002.

Export: BibTex EndNote

Article Metrics

Article views: 1171 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 17 May 2014 Manuscript revised: 03 July 2014 Online: Published: 01 December 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误