J. Semicond. > Volume 35 > Issue 12 > Article Number: 124006

Static characteristics and short channel effect in enhancement-mode AlN/GaN/AlN N-polar MISFET with self-aligned source/drain regions

Bin Li , , Lan Wei and Cai Wen

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper aims to simulate the I-V static characteristic of the enhancement-mode (E-mode) N-polar GaN metal-insulator-semiconductor field effect transistor (MISFET) with self-aligned source/drain regions. Firstly, with SILVACO TCAD device simulation, the drain-source current as a function of the gate-source voltage is calculated and the dependence of the drain-source current on the drain-source voltage in the case of different gate-source voltages for the device with a 0.62 μm gate length is investigated. Secondly, a comparison is made with the experimental report. Lastly, the transfer characteristic with different gate lengths and different buffer layers has been performed. The results show that the simulation is in accord with the experiment at the gate length of 0.62 μm and the short channel effect becomes pronounced as gate length decreases. The E-mode will not be held below a 100 nm gate length unless both transversal scaling and vertical scaling are being carried out simultaneously.

Key words: GaNenhancement-modeshort channel effectMISFET

Abstract: This paper aims to simulate the I-V static characteristic of the enhancement-mode (E-mode) N-polar GaN metal-insulator-semiconductor field effect transistor (MISFET) with self-aligned source/drain regions. Firstly, with SILVACO TCAD device simulation, the drain-source current as a function of the gate-source voltage is calculated and the dependence of the drain-source current on the drain-source voltage in the case of different gate-source voltages for the device with a 0.62 μm gate length is investigated. Secondly, a comparison is made with the experimental report. Lastly, the transfer characteristic with different gate lengths and different buffer layers has been performed. The results show that the simulation is in accord with the experiment at the gate length of 0.62 μm and the short channel effect becomes pronounced as gate length decreases. The E-mode will not be held below a 100 nm gate length unless both transversal scaling and vertical scaling are being carried out simultaneously.

Key words: GaNenhancement-modeshort channel effectMISFET



References:

[1]

Xu Z X, Zhang W M, Xu F. Investigation of 600 V GaN HEMTs for high efficiency and high temperature applications[J]. Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2014: 131.

[2]

Ramanan N, Lee B, Misra V. Device modeling for understanding AlGaN/GaN HEMT gate-lag[J]. IEEE Trans Electron Devices, 2014, 61(6): 2012. doi: 10.1109/TED.2014.2313814

[3]

Wang J, Sun L L, Jun L. A surface-potential-based model for AlGaN/AlN/GaN HEMT[J]. Journal of Semiconductors, 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[4]

Zhuo X J, Zhang J, Li D W. Enhanced performances of InGaN/GaN-based blue LED with an ultra-thin inserting layer between GaN barriers and InGaN wells[J]. Opt Commun, 2014, 325: 129. doi: 10.1016/j.optcom.2014.04.018

[5]

Martínez-Gutiérrez D, Velasco V R. Transverse acoustic waves in piezoelectric ZnO/MgO and GaN/AlN Fibonacci-periodic superlattices[J]. Surf Sci, 2014, 624: 58. doi: 10.1016/j.susc.2014.01.020

[6]

Zhu Y X, Cao W W, Fan Y Y. Effects of rapid thermal annealing on ohmic contact of AlGaN/GaN HEMTs[J]. Journal of Semiconductors, 2014, 35(2): 026004. doi: 10.1088/1674-4926/35/2/026004

[7]

Kim H, Ryou J H, Dupuis R D. Electrical characteristics of contacts to thin film N-polar n-type GaN[J]. Appl Phys Lett, 2008, 93(19): 192106. doi: 10.1063/1.3013838

[8]

Liu X S, Chen K J. GaN single-polarity power supply bootstrapped comparator for high-temperature electronics[J]. IEEE Trans Electron Device Lett, 2011, 32(1): 27. doi: 10.1109/LED.2010.2088376

[9]

Yuan L, Chen H, Chen K J. Normally off AlGaN/GaN metal 2DEG tunnel-junction field-effect transistors[J]. IEEE Electron Device Lett, 2011, 32(3): 303. doi: 10.1109/LED.2010.2095823

[10]

Im, Ha, Kim, J. Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate[J]. IEEE Electron Device Lett, 2011, 31(3): 192.

[11]

Ahn H K, Kim Z S, Bae S B. Normally-off dual gate AlGaN/GaN MISFET with selective area-recessed floating gate[J]. Solid-State Electron, 2014, 95: 42. doi: 10.1016/j.sse.2014.03.005

[12]

Song X B, Gu G D, Shao B. DC and RF characteristics of enhancement-mode InAlN/GaN HEMT with fluorine treatment[J]. Journal of Semiconductors, 2014, 35(4): 044002. doi: 10.1088/1674-4926/35/4/044002

[13]

Farahmand M, Garetto C, Bellotti E. Monte Carlo simulation of electron transport in the Ⅲ-nitride wurtzite phase materials system:binaries and ternaries[J]. IEEE Trans Electron Devices, 2001, 48(3): 535. doi: 10.1109/16.906448

[14]

Caridi E A, Chang T Y, Goossen K W. Direct demonstration of a misfit strain-generated electric field in a[J]. Appl Phys Lett, 1990, 56(7): 659. doi: 10.1063/1.102729

[15]

Singisetti U, Wong M H, Dasgupta S. Enhancement-mode N-polar GaN MISFETs with self-aligned source/drain regrowth[J]. IEEE Electron Device Lett, 2011, 32(2): 137. doi: 10.1109/LED.2010.2090125

[16]

ATLAS Device simulation software User's Manual, SILVACO International

[17]

Albrecht J D, Wang R P, Ruden P P. Electron transport characteristics of GaN for high temperature device modeling[J]. J Appl Phys, 1998, 83(9): 4777. doi: 10.1063/1.367269

[18]

Farahmand M, Garetto C, Bellotti E. Monte Carlo simulation of electron transport in the Ⅲ-nitride wurtzite phase materials system:binaries and ternaries[J]. IEEE Trans Electron Devices, 2001, 48(3): 535. doi: 10.1109/16.906448

[19]

Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides[J]. Phys Rev B, 1997, 56(16): R10024. doi: 10.1103/PhysRevB.56.R10024

[20]

Ambacher O, Smart J, Shealy J R. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures[J]. J Appl Phys, 1999, 85(6): 3222. doi: 10.1063/1.369664

[21]

Guerra D, Akis R, Marino F A. Aspect ratio impact on RF and DC performance of state-of-the-art short-channel GaN and InGaAs HEMTs[J]. IEEE Electron Device Lett, 2010, 31(11): 1217.

[22]

Jessen G H, Fitch R C, Gillespie J K. Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices[J]. IEEE Trans Electron Devices, 2007, 54(10): 2589. doi: 10.1109/TED.2007.904476

[1]

Xu Z X, Zhang W M, Xu F. Investigation of 600 V GaN HEMTs for high efficiency and high temperature applications[J]. Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2014: 131.

[2]

Ramanan N, Lee B, Misra V. Device modeling for understanding AlGaN/GaN HEMT gate-lag[J]. IEEE Trans Electron Devices, 2014, 61(6): 2012. doi: 10.1109/TED.2014.2313814

[3]

Wang J, Sun L L, Jun L. A surface-potential-based model for AlGaN/AlN/GaN HEMT[J]. Journal of Semiconductors, 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[4]

Zhuo X J, Zhang J, Li D W. Enhanced performances of InGaN/GaN-based blue LED with an ultra-thin inserting layer between GaN barriers and InGaN wells[J]. Opt Commun, 2014, 325: 129. doi: 10.1016/j.optcom.2014.04.018

[5]

Martínez-Gutiérrez D, Velasco V R. Transverse acoustic waves in piezoelectric ZnO/MgO and GaN/AlN Fibonacci-periodic superlattices[J]. Surf Sci, 2014, 624: 58. doi: 10.1016/j.susc.2014.01.020

[6]

Zhu Y X, Cao W W, Fan Y Y. Effects of rapid thermal annealing on ohmic contact of AlGaN/GaN HEMTs[J]. Journal of Semiconductors, 2014, 35(2): 026004. doi: 10.1088/1674-4926/35/2/026004

[7]

Kim H, Ryou J H, Dupuis R D. Electrical characteristics of contacts to thin film N-polar n-type GaN[J]. Appl Phys Lett, 2008, 93(19): 192106. doi: 10.1063/1.3013838

[8]

Liu X S, Chen K J. GaN single-polarity power supply bootstrapped comparator for high-temperature electronics[J]. IEEE Trans Electron Device Lett, 2011, 32(1): 27. doi: 10.1109/LED.2010.2088376

[9]

Yuan L, Chen H, Chen K J. Normally off AlGaN/GaN metal 2DEG tunnel-junction field-effect transistors[J]. IEEE Electron Device Lett, 2011, 32(3): 303. doi: 10.1109/LED.2010.2095823

[10]

Im, Ha, Kim, J. Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate[J]. IEEE Electron Device Lett, 2011, 31(3): 192.

[11]

Ahn H K, Kim Z S, Bae S B. Normally-off dual gate AlGaN/GaN MISFET with selective area-recessed floating gate[J]. Solid-State Electron, 2014, 95: 42. doi: 10.1016/j.sse.2014.03.005

[12]

Song X B, Gu G D, Shao B. DC and RF characteristics of enhancement-mode InAlN/GaN HEMT with fluorine treatment[J]. Journal of Semiconductors, 2014, 35(4): 044002. doi: 10.1088/1674-4926/35/4/044002

[13]

Farahmand M, Garetto C, Bellotti E. Monte Carlo simulation of electron transport in the Ⅲ-nitride wurtzite phase materials system:binaries and ternaries[J]. IEEE Trans Electron Devices, 2001, 48(3): 535. doi: 10.1109/16.906448

[14]

Caridi E A, Chang T Y, Goossen K W. Direct demonstration of a misfit strain-generated electric field in a[J]. Appl Phys Lett, 1990, 56(7): 659. doi: 10.1063/1.102729

[15]

Singisetti U, Wong M H, Dasgupta S. Enhancement-mode N-polar GaN MISFETs with self-aligned source/drain regrowth[J]. IEEE Electron Device Lett, 2011, 32(2): 137. doi: 10.1109/LED.2010.2090125

[16]

ATLAS Device simulation software User's Manual, SILVACO International

[17]

Albrecht J D, Wang R P, Ruden P P. Electron transport characteristics of GaN for high temperature device modeling[J]. J Appl Phys, 1998, 83(9): 4777. doi: 10.1063/1.367269

[18]

Farahmand M, Garetto C, Bellotti E. Monte Carlo simulation of electron transport in the Ⅲ-nitride wurtzite phase materials system:binaries and ternaries[J]. IEEE Trans Electron Devices, 2001, 48(3): 535. doi: 10.1109/16.906448

[19]

Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides[J]. Phys Rev B, 1997, 56(16): R10024. doi: 10.1103/PhysRevB.56.R10024

[20]

Ambacher O, Smart J, Shealy J R. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures[J]. J Appl Phys, 1999, 85(6): 3222. doi: 10.1063/1.369664

[21]

Guerra D, Akis R, Marino F A. Aspect ratio impact on RF and DC performance of state-of-the-art short-channel GaN and InGaAs HEMTs[J]. IEEE Electron Device Lett, 2010, 31(11): 1217.

[22]

Jessen G H, Fitch R C, Gillespie J K. Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices[J]. IEEE Trans Electron Devices, 2007, 54(10): 2589. doi: 10.1109/TED.2007.904476

[1]

Gu Guodong, Cai Yong, Feng Zhihong, Liu Bo, Zeng Chunhong, Yu Guohao, Dong Zhihua, Zhang Baoshun. Enhancement-mode InAlN/GaN MISHEMT with low gate leakage current. J. Semicond., 2012, 33(6): 064004. doi: 10.1088/1674-4926/33/6/064004

[2]

Feng Zhihong, Xie Shengyin, Zhou Rui, Yin Jiayun, Zhou Wei, Cai Shujun. A high-performance enhancement-mode AlGaN/GaN HEMT. J. Semicond., 2010, 31(8): 084001. doi: 10.1088/1674-4926/31/8/084001

[3]

Xubo Song, Guodong Gu, Shaobo Dun, Yuanjie Lü, Tingting Han, Yuangang Wang, Peng Xu, Zhihong Feng. DC and RF characteristics of enhancement-mode InAlN/GaN HEMT with fluorine treatment. J. Semicond., 2014, 35(4): 044002. doi: 10.1088/1674-4926/35/4/044002

[4]

Lin Guoqiang, Zeng Yiping, Wang Xiaoliang, Liu Hongxin. Effect of a Metal Buffer Layer on GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia. J. Semicond., 2008, 29(10): 1998.

[5]

Weiyi Li, Zhili Zhang, Kai Fu, Guohao Yu, Xiaodong Zhang, Shichuang Sun, Liang Song, Ronghui Hao, Yaming Fan, Yong Cai, Baoshun Zhang. Design and simulation of a novel E-mode GaN MIS-HEMT based on a cascode connection for suppression of electric field under gate and improvement of reliability. J. Semicond., 2017, 38(7): 074001. doi: 10.1088/1674-4926/38/7/074001

[6]

Jianjun Zhou, Song Bai, Cen Kong, Xijiao Geng, Haiyan Lu, Yuechan Kong, Tangsheng Chen. Research on the diamond MISFET. J. Semicond., 2013, 34(3): 034006. doi: 10.1088/1674-4926/34/3/034006

[7]

Bu Jianhui, Bi Jinshun, Song Limei, Han Zhengsheng. Short channel effect in deep submicron PDSOI nMOSFETs. J. Semicond., 2010, 31(1): 014002. doi: 10.1088/1674-4926/31/1/014002

[8]

Meile Wu, Xiaoshi Jin, Rongyan Chuai, Xi Liu, Jong-Ho Lee. Simulation study on short channel double-gate junctionless field-effect transistors. J. Semicond., 2013, 34(3): 034004. doi: 10.1088/1674-4926/34/3/034004

[9]

Li Ming, Zhang Haiying, Xu Jingbo, Li Xiao, Liu Liang, Fu Xiaojun. Gate Annealing of an Enhancement-Mode InGaP/AlGaAs/InGaAs PHEMT. J. Semicond., 2008, 29(8): 1487.

[10]

Xu Jingbo, Yin Junjian, Zhang Haiying, Li Xiao, Liu Liang, Ye Tianchun. Abstraction of Small Signal Equivalent Circuit Parameters of Enhancement-Mode InGaP/AlGaAs/InGaAs PHEMT. J. Semicond., 2007, 28(3): 361.

[11]

D.K. Panda, T.R. Lenka. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J. Semicond., 2017, 38(6): 064002. doi: 10.1088/1674-4926/38/6/064002

[12]

Wang Maojun, Shen Bo, Wang Yan, Huang Sen, Xu Fujun, Xu Jian, Yang Zhijian, Zhang Guoyi. High Temperature Performance of GaN and AIxGal-xN/GaN Heterostructures. J. Semicond., 2007, 28(S1): 376.

[13]

Li Ti, Pan Huapu, Xu Ke, Hu Xiaodong. Optimization of the Electron Blocking Layer in GaN Laser Diodes. J. Semicond., 2006, 27(8): 1458.

[14]

Chen Jun, Wang Jianfeng, Wang Hui, Zhao Degang, Zhu Jianjun, Zhang Shuming, Yang Hui. Dislocation Reduction in GaN on Sapphire by Epitaxial Lateral Overgrowth. J. Semicond., 2006, 27(3): 419.

[15]

Li Haiou, Zhang Haiying, Yin Junjian, Ye Tianchun. Monolithic Integration of InGaP/AlGaAs/InGaAs Enhancement/Depletion-Mode PHEMTs. J. Semicond., 2005, 26(12): 2281.

[16]

Kang Xiangning, Bao Kui, Chen Zhizhong, Xu Ke, Zhang Bei, Yu Tongjun, Nie Ruijuan, Zhang Guoyi. Vertical Electrode Structure GaN Based Light Emitting Diodes. J. Semicond., 2007, 28(S1): 482.

[17]

Chen Yu, Wang Liangchen, Yi Xiaoyan, Wang Libin, Liu Zhiqiang, Ma Long, Yan Lihong. Analyses in Reliability of GaN-Based High Power Light Emitting Diodes. J. Semicond., 2007, 28(S1): 500.

[18]

Su Zhiguo, Xu Jintong, Chen Jun, Li Xiangyang, Liu Ji, Zhao Degang. Negative Persistent Photoconductivity in Unintentionally Doped n-Type GaN. J. Semicond., 2007, 28(6): 878.

[19]

Gao Zhiyuan, Hao Yue, Li Peixian, Zhang Jincheng. Influence of Threading Dislocations on the Luminescence Efficiency of GaN Heteroepitaxial Layers. J. Semicond., 2008, 29(3): 521.

[20]

Liu Guoguo, Huang Jun, Wei Ke, Liu Xinyu, He Zhijing. Post-Gate Process Annealing Effects of Recessed AlGaN/GaN HEMTs. J. Semicond., 2008, 29(12): 2326.

Search

Advanced Search >>

GET CITATION

B Li, L Wei, C Wen. Static characteristics and short channel effect in enhancement-mode AlN/GaN/AlN N-polar MISFET with self-aligned source/drain regions[J]. J. Semicond., 2014, 35(12): 124006. doi: 10.1088/1674-4926/35/12/124006.

Export: BibTex EndNote

Article Metrics

Article views: 1304 Times PDF downloads: 5 Times Cited by: 0 Times

History

Manuscript received: 21 April 2014 Manuscript revised: 23 June 2014 Online: Published: 01 December 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误