J. Semicond. > Volume 35 > Issue 2 > Article Number: 024001

Temperature dependent IDS-VGS characteristics of an N-channel Si tunneling field-effect transistor with a germanium source on Si(110) substrate

Yan Liu , Jing Yan , Hongjuan Wang and Genquan Han ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: We fabricated n-type Si-based TFETs with a Ge source on Si(110) substrate. The temperature dependent IDS-VGS characteristics of a TFET formed on Si(110) are investigated in the temperature range of 210 to 300 K. A study of the temperature dependence of $I_{\rm Leakage}$ indicates that $I_{\rm Leakage}$ is mainly dominated by the Shockley-Read-Hall (SRH) generation-recombination current of the n+ drain-Si substrate junction. $I_{\rm ON}$ increases monotonically with temperature, which is attributed to a reduction of the bandgap at the tunneling junction and an enhancement of band-to-band tunneling rate. The subthreshold swing S for trap assisted tunneling (TAT) current and band-to-band tunneling (BTBT) current shows the different temperature dependence. The subthreshold swing S for the TAT current degrades with temperature, while the S for BTBT current is temperature independent.

Key words: tunneling field-effect-transistorband-to-band tunnelinggermaniumtunnelingtemperature

Abstract: We fabricated n-type Si-based TFETs with a Ge source on Si(110) substrate. The temperature dependent IDS-VGS characteristics of a TFET formed on Si(110) are investigated in the temperature range of 210 to 300 K. A study of the temperature dependence of $I_{\rm Leakage}$ indicates that $I_{\rm Leakage}$ is mainly dominated by the Shockley-Read-Hall (SRH) generation-recombination current of the n+ drain-Si substrate junction. $I_{\rm ON}$ increases monotonically with temperature, which is attributed to a reduction of the bandgap at the tunneling junction and an enhancement of band-to-band tunneling rate. The subthreshold swing S for trap assisted tunneling (TAT) current and band-to-band tunneling (BTBT) current shows the different temperature dependence. The subthreshold swing S for the TAT current degrades with temperature, while the S for BTBT current is temperature independent.

Key words: tunneling field-effect-transistorband-to-band tunnelinggermaniumtunnelingtemperature



References:

[1]

Hu C, Patel P, Bowonder A. Prospect of tunneling green transistor for 0. 1 V CMOS[J]. IEEE International Electron Devices Meeting (IEDM), 2010: 387.

[2]

Ionescu A M, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches[J]. Nature, 2011, 479: 329. doi: 10.1038/nature10679

[3]

Han G, Guo P, Yang Y. Silicon-based tunneling field-effect transistor with elevated germanium source formed on (110) silicon substrate[J]. Appl Phys Lett, 2011, 98: 153502. doi: 10.1063/1.3579242

[4]

Yang Y, Su S, Guo P. Towards direct band-to-band tunneling in p-channel tunneling field effect transistor (TFET): technology enablement by germanium-tin (GeSn)[J]. IEEE International Electron Devices Meeting (IEDM), 2012: 379.

[5]

Han G, Guo P, Yang Y. Source engineering for tunnel field-effect transistor:elevated source with vertical silicon-germanium/germanium heterostructure[J]. Jpn J Appl Phys, 2011, 50: 04D.

[6]

Guo P F, Yang L T, Yang Y. Tunneling field effect transistor:effect of strain and temperature on tunneling current[J]. IEEE Electron Device Lett, 2009, 30: 981. doi: 10.1109/LED.2009.2026296

[7]

Liu Y, Wang H, Yan J. Silicon tunnel field-effect transistor with in situ doped single crystalline Ge source for achieving sub-60 mV/decade subthreshold swing[J]. Chin Phys Lett, 2013, 30: 088502. doi: 10.1088/0256-307X/30/8/088502

[8]

Jeon K, Loh W Y, Patel P. Si tunnel transistors with a novel silicided source and 46 mV/dec swing[J]. Symposium on VLSI Technology, 2010: 121.

[9]

Han G, Yee Y S, Guo P. Enhancement of TFET performance using dopant profile steepening implant and source dopant concentration engineering at tunneling junction[J]. Silicon Nanoelectronics Workshop, 2010.

[10]

Toh E H, Wang G H, Chan L. Device design and scalability of a double-gate tunneling field-effect transistor with silicon-germanium source[J]. Jpn J Appl Phys, 2007, 46: 2593.

[11]

Knoch J, Appenzeller J. Modeling of high-performance p-type Ⅲ-Ⅴ heterojunction tunnel FETs[J]. IEEE Electron Device Lett, 2010, 31: 305. doi: 10.1109/LED.2010.2041180

[12]

Mookerjea S, Mohata D, Mayer T. Mookerjea S, Mohata D, Mayer T, et al. Temperature-dependent Ⅳ characteristics of a vertical In0. 53Ga0. 47As tunnel FET[J]. IEEE Electron Device Lett, 2010, 31: 564.

[13]

Kane E O. Zener tunneling in semiconductors[J]. J Phys Chem Solids, 1960, 12: 181. doi: 10.1016/0022-3697(60)90035-4

[14]

Zhang Q, Zhao W, Seabaugh A. Analytic expression and approach for low-subthreshold-swing tunnel transistors[J]. Device Research Conference Digest, 2005: 161.

[1]

Hu C, Patel P, Bowonder A. Prospect of tunneling green transistor for 0. 1 V CMOS[J]. IEEE International Electron Devices Meeting (IEDM), 2010: 387.

[2]

Ionescu A M, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches[J]. Nature, 2011, 479: 329. doi: 10.1038/nature10679

[3]

Han G, Guo P, Yang Y. Silicon-based tunneling field-effect transistor with elevated germanium source formed on (110) silicon substrate[J]. Appl Phys Lett, 2011, 98: 153502. doi: 10.1063/1.3579242

[4]

Yang Y, Su S, Guo P. Towards direct band-to-band tunneling in p-channel tunneling field effect transistor (TFET): technology enablement by germanium-tin (GeSn)[J]. IEEE International Electron Devices Meeting (IEDM), 2012: 379.

[5]

Han G, Guo P, Yang Y. Source engineering for tunnel field-effect transistor:elevated source with vertical silicon-germanium/germanium heterostructure[J]. Jpn J Appl Phys, 2011, 50: 04D.

[6]

Guo P F, Yang L T, Yang Y. Tunneling field effect transistor:effect of strain and temperature on tunneling current[J]. IEEE Electron Device Lett, 2009, 30: 981. doi: 10.1109/LED.2009.2026296

[7]

Liu Y, Wang H, Yan J. Silicon tunnel field-effect transistor with in situ doped single crystalline Ge source for achieving sub-60 mV/decade subthreshold swing[J]. Chin Phys Lett, 2013, 30: 088502. doi: 10.1088/0256-307X/30/8/088502

[8]

Jeon K, Loh W Y, Patel P. Si tunnel transistors with a novel silicided source and 46 mV/dec swing[J]. Symposium on VLSI Technology, 2010: 121.

[9]

Han G, Yee Y S, Guo P. Enhancement of TFET performance using dopant profile steepening implant and source dopant concentration engineering at tunneling junction[J]. Silicon Nanoelectronics Workshop, 2010.

[10]

Toh E H, Wang G H, Chan L. Device design and scalability of a double-gate tunneling field-effect transistor with silicon-germanium source[J]. Jpn J Appl Phys, 2007, 46: 2593.

[11]

Knoch J, Appenzeller J. Modeling of high-performance p-type Ⅲ-Ⅴ heterojunction tunnel FETs[J]. IEEE Electron Device Lett, 2010, 31: 305. doi: 10.1109/LED.2010.2041180

[12]

Mookerjea S, Mohata D, Mayer T. Mookerjea S, Mohata D, Mayer T, et al. Temperature-dependent Ⅳ characteristics of a vertical In0. 53Ga0. 47As tunnel FET[J]. IEEE Electron Device Lett, 2010, 31: 564.

[13]

Kane E O. Zener tunneling in semiconductors[J]. J Phys Chem Solids, 1960, 12: 181. doi: 10.1016/0022-3697(60)90035-4

[14]

Zhang Q, Zhao W, Seabaugh A. Analytic expression and approach for low-subthreshold-swing tunnel transistors[J]. Device Research Conference Digest, 2005: 161.

Search

Advanced Search >>

GET CITATION

Y Liu, J Yan, H J Wang, G Q Han. Temperature dependent IDS-VGS characteristics of an N-channel Si tunneling field-effect transistor with a germanium source on Si(110) substrate[J]. J. Semicond., 2014, 35(2): 024001. doi: 10.1088/1674-4926/35/2/024001.

Export: BibTex EndNote

Article Metrics

Article views: 1757 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 21 July 2013 Manuscript revised: 30 August 2013 Online: Published: 01 February 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误