J. Semicond. > Volume 35 > Issue 3 > Article Number: 034002

Analytical modeling and simulation of germanium single gate silicon on insulator TFET

T. S. Arun Samuel , and N. B. Balamurugan

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper proposes a new two dimensional (2D) analytical model for a germanium (Ge) single gate silicon-on-insulator tunnel field effect transistor (SG SOI TFET). The parabolic approximation technique is used to solve the 2D Poisson equation with suitable boundary conditions and analytical expressions are derived for the surface potential, the electric field along the channel and the vertical electric field. The device output tunnelling current is derived further by using the electric fields. The results show that Ge based TFETs have significant improvements in on-current characteristics. The effectiveness of the proposed model has been verified by comparing the analytical model results with the technology computer aided design (TCAD) simulation results and also comparing them with results from a silicon based TFET.

Key words: tunnel field effect transistor (TFET)analytical modellingPoisson equationsurface potentialelectric field

Abstract: This paper proposes a new two dimensional (2D) analytical model for a germanium (Ge) single gate silicon-on-insulator tunnel field effect transistor (SG SOI TFET). The parabolic approximation technique is used to solve the 2D Poisson equation with suitable boundary conditions and analytical expressions are derived for the surface potential, the electric field along the channel and the vertical electric field. The device output tunnelling current is derived further by using the electric fields. The results show that Ge based TFETs have significant improvements in on-current characteristics. The effectiveness of the proposed model has been verified by comparing the analytical model results with the technology computer aided design (TCAD) simulation results and also comparing them with results from a silicon based TFET.

Key words: tunnel field effect transistor (TFET)analytical modellingPoisson equationsurface potentialelectric field



References:

[1]

Zhang Q, Zhao W, Seabaugh A. Low-subthreshold-swing tunnel transistors[J]. IEEE Electron Device Lett, 2006, 27(4): 297. doi: 10.1109/LED.2006.871855

[2]

Appenzeller J, Lin Y M, Knoch J. Band-to-band tunneling in carbon nanotube field-effect transistors[J]. Phys Rev Lett, 2004, 93(19): 196.

[3]

Toh E H, Wang G H, Chan L. Device design and scalability of a double-gate tunnelling field-effect transistor with silicon-germanium source[J]. Jpn J Appl Phys, 2008, 47(4): 2593. doi: 10.1143/JJAP.47.2593

[4]

Kim S H, Kam H, Hu C. Germanium-source tunnel field effect transistors with record high ION/IOFF[J]. IEEE VLSI Symp on VLSI Technology, 2009: 178.

[5]

Boucart K, Ionescu A M. Double-gate tunnel FET with high-k gate dielectric[J]. IEEE Trans Electron Devices, 2007, 54(7): 1725. doi: 10.1109/TED.2007.899389

[6]

Toh E H, Wang G H, Samudra G. Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization[J]. Appl Phys Lett, 2007, 90(26): 263.

[7]

Damrongplasit N, Shin C. Study of random dopant fluctuation effects in germanium-source tunnel FETs[J]. IEEE Trans Electron Devices, 2011, 58(10): 3541. doi: 10.1109/TED.2011.2161990

[8]

Nayfeh O M, Hoyt J L, Antoniads D A. Strained Si1-xGex/Si band-to-band tunneling transistors:impact of tunnel-junction germanium composition and doping concentration on switching behaviour[J]. IEEE Trans Electron Devices, 2009, 56(10): 2264. doi: 10.1109/TED.2009.2028055

[9]

Toh E H, Wang G H, Samudra G. Device physics and design of germanium tunnelling field-effect transistor with source and drain engineering for low power and high performance applications[J]. J Appl Phys, 2008, 103(10): 104504. doi: 10.1063/1.2924413

[10]

Lee M J. Analytical model of a single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs)[J]. Solid-State Electron, 2011, 63: 110. doi: 10.1016/j.sse.2011.05.008

[11]

Ka ne. Zener tunneling in semiconductors[J]. J Phys Chem Solids, 1960, 12(2): 181. doi: 10.1016/0022-3697(60)90035-4

[1]

Zhang Q, Zhao W, Seabaugh A. Low-subthreshold-swing tunnel transistors[J]. IEEE Electron Device Lett, 2006, 27(4): 297. doi: 10.1109/LED.2006.871855

[2]

Appenzeller J, Lin Y M, Knoch J. Band-to-band tunneling in carbon nanotube field-effect transistors[J]. Phys Rev Lett, 2004, 93(19): 196.

[3]

Toh E H, Wang G H, Chan L. Device design and scalability of a double-gate tunnelling field-effect transistor with silicon-germanium source[J]. Jpn J Appl Phys, 2008, 47(4): 2593. doi: 10.1143/JJAP.47.2593

[4]

Kim S H, Kam H, Hu C. Germanium-source tunnel field effect transistors with record high ION/IOFF[J]. IEEE VLSI Symp on VLSI Technology, 2009: 178.

[5]

Boucart K, Ionescu A M. Double-gate tunnel FET with high-k gate dielectric[J]. IEEE Trans Electron Devices, 2007, 54(7): 1725. doi: 10.1109/TED.2007.899389

[6]

Toh E H, Wang G H, Samudra G. Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization[J]. Appl Phys Lett, 2007, 90(26): 263.

[7]

Damrongplasit N, Shin C. Study of random dopant fluctuation effects in germanium-source tunnel FETs[J]. IEEE Trans Electron Devices, 2011, 58(10): 3541. doi: 10.1109/TED.2011.2161990

[8]

Nayfeh O M, Hoyt J L, Antoniads D A. Strained Si1-xGex/Si band-to-band tunneling transistors:impact of tunnel-junction germanium composition and doping concentration on switching behaviour[J]. IEEE Trans Electron Devices, 2009, 56(10): 2264. doi: 10.1109/TED.2009.2028055

[9]

Toh E H, Wang G H, Samudra G. Device physics and design of germanium tunnelling field-effect transistor with source and drain engineering for low power and high performance applications[J]. J Appl Phys, 2008, 103(10): 104504. doi: 10.1063/1.2924413

[10]

Lee M J. Analytical model of a single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs)[J]. Solid-State Electron, 2011, 63: 110. doi: 10.1016/j.sse.2011.05.008

[11]

Ka ne. Zener tunneling in semiconductors[J]. J Phys Chem Solids, 1960, 12(2): 181. doi: 10.1016/0022-3697(60)90035-4

[1]

S. Theodore Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. Lakshmi Priya. Compact analytical model for single gate AlInSb/InSb high electron mobility transistors. J. Semicond., 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003

[2]

Pranav Kumar Asthana, Yogesh Goswami, Bahniman Ghosh. A novel sub 20 nm single gate tunnel field effect transistor with intrinsic channel forultra low power applications. J. Semicond., 2016, 37(5): 054002. doi: 10.1088/1674-4926/37/5/054002

[3]

Pranav Kumar Asthana. High performance 20 nm GaSb/InAs junctionless tunnel field effect transistor for low power supply. J. Semicond., 2015, 36(2): 024003. doi: 10.1088/1674-4926/36/2/024003

[4]

Chen Weili, Xiao Jinglin. Bound Polaron in a Quantum Well Under an Electric Field. J. Semicond., 2006, 27(5): 787.

[5]

Huifang Xu, Yuehua Dai, Ning Li, Jianbin Xu. A 2-D semi-analytical model of double-gate tunnel field-effect transistor. J. Semicond., 2015, 36(5): 054002. doi: 10.1088/1674-4926/36/5/054002

[6]

Jianbing Cheng, Xiaojuan Xia, Tong Jian, Yufeng Guo, Shujuan Yu, Hao Yang. Electric field optimized LDMOST using multiple decrescent and reverse charge regions. J. Semicond., 2014, 35(7): 074007. doi: 10.1088/1674-4926/35/7/074007

[7]

Lu Jingxue, Huang Fengyi, Wang Zhigong, Wu Wengang. Refinement of an Analytical Approximation of the Surface Potential in MOSFETs. J. Semicond., 2006, 27(7): 1155.

[8]

Xu Wenjie, Sun Lingling, Liu Jun, Li Wenjun, Zhang Haipeng, Wu Yanming, He Jia. A Continuous and Analytical Surface Potential Model for SOI LDMOS. J. Semicond., 2007, 28(11): 1712.

[9]

Chih-Tang Sah, Bin B.Jie. The Bipolar Field-Effect Transistor:II.Drift-Diffusion Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2007, 28(12): 1849.

[10]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor:III.Short Channel Electrochemical Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2008, 29(1): 1.

[11]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor:IV.Short Channel Drift-Diffusion Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2008, 29(2): 193.

[12]

Sah Chih-Tang, Jie Binbin. The Theory of Field-Effect Transistors: XI.The Bipolar Electrochemical Currents (1-2-MOS-Gates on Thin-Thick Pure-Impure Base). J. Semicond., 2008, 29(3): 397.

[13]

Jie Binbin, Sah Chih-Tang. The Theory of Field-Effect Transistors XII.The Bipolar Drift and Diffusion Currents(1-2-MOS-Gates on Thin-Thick Pure-Impure Base). J. Semicond., 2008, 29(7): 1227.

[14]

Santosh K. Gupta, Srimanta Baishya. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects. J. Semicond., 2013, 34(7): 074001. doi: 10.1088/1674-4926/34/7/074001

[15]

Sun Lin, Yang Wenwei, Xiang Cailan, Yu Zhiping, Tian Lilin. A Broyden Method for Self-Consistent Solution of Schrdinger and Poisson Equations. J. Semicond., 2005, 26(12): 2344.

[16]

Jie Fan, Bo Zhang, Xiaorong Luo, Zhigang Wang, Zhaoji Li. Analytical model for high-voltage SOI device with composite-k dielectric buried layer. J. Semicond., 2013, 34(9): 094008. doi: 10.1088/1674-4926/34/9/094008

[17]

M. Tiotsop, A. J. Fotue, S. C. Kenfack, N. Issofa, A. V. Wirngo, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Electro-magnetic weak coupling optical polaron and temperature effect in quantum dot. J. Semicond., 2015, 36(10): 102001. doi: 10.1088/1674-4926/36/10/102001

[18]

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[19]

He Hongyu, Zheng Xueren. Analytical drain current model for amorphous IGZO thin-film transistors in above-threshold regime. J. Semicond., 2011, 32(7): 074004. doi: 10.1088/1674-4926/32/7/074004

[20]

C. Usha, P. Vimala. A compact two-dimensional analytical model of the electrical characteristics of a triple-material double-gate tunneling FET structure. J. Semicond., 2019, 40(12): -1.

Search

Advanced Search >>

GET CITATION

T. S. A. Samuel, N. B. Balamurugan. Analytical modeling and simulation of germanium single gate silicon on insulator TFET[J]. J. Semicond., 2014, 35(3): 034002. doi: 10.1088/1674-4926/35/3/034002.

Export: BibTex EndNote

Article Metrics

Article views: 587 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 02 July 2013 Manuscript revised: Online: Published: 01 March 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误