J. Semicond. > Volume 35 > Issue 3 > Article Number: 035004

A 3.8 GHz programmable gain amplifier with a 0.1 dB gain step

Nan Lin 1, , , Fei Fang 1, 2, , Zhiliang Hong 1, and Hao Fang 3,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A broadband programmable gain amplifier (PGA) with a small gain step and low gain error has been designed in 0.13 μm CMOS technology. The PGA was implemented with open-loop architecture to provide wide bandwidth. A two-stage gain control method, which consists of a resistor ladder attenuator and an active fine gain control stage, provides the small gain step. A look-up table based gain control method is introduced in the fine gain control stage to lower the gain error. The proposed PGA shows a decibel-linear variable gain from -4 to 20 dB with a gain step of 0.1 dB and a gain error less than ±0.05 dB. The 3-dB bandwidth and maximum ⅡP3 are 3.8 GHz and 17 dBm, respectively.

Key words: variable gain amplifierprogrammable gain amplifierdecibel-linear gainCMOS integrated circuitshard disk drives

Abstract: A broadband programmable gain amplifier (PGA) with a small gain step and low gain error has been designed in 0.13 μm CMOS technology. The PGA was implemented with open-loop architecture to provide wide bandwidth. A two-stage gain control method, which consists of a resistor ladder attenuator and an active fine gain control stage, provides the small gain step. A look-up table based gain control method is introduced in the fine gain control stage to lower the gain error. The proposed PGA shows a decibel-linear variable gain from -4 to 20 dB with a gain step of 0.1 dB and a gain error less than ±0.05 dB. The 3-dB bandwidth and maximum ⅡP3 are 3.8 GHz and 17 dBm, respectively.

Key words: variable gain amplifierprogrammable gain amplifierdecibel-linear gainCMOS integrated circuitshard disk drives



References:

[1]

Yoo S J, Ravindran A, Ismail M. A low voltage CMOS transresistance-based variable gain amplifier[J]. IEEE International Symposium on Circuits and Systems, 2004: 809.

[2]

Lin N, Fang F, Hong Z L. A CMOS broadband precise programmable gain amplifier with bandwidth extension technique[J]. IEEE Asian Solid-State Circuits Conference, 2011: 225.

[3]

Duong Q H, Le Q, Kim C W. A 95-dB linear low-power variable gain amplifier[J]. IEEE Trans Circuits Syst Ⅰ, Regular Papers, 2006, 47(8): 1648.

[4]

Nguyen H H, Duong Q H, Lee S G. 84 dB 5.2 mA digitally-controlled variable gain amplifier[J]. Electron Lett, 2008, 44(5): 344. doi: 10.1049/el:20080135

[5]

Nguyen H H, Nguyen H N, Lee J S. A binary-weighted switching and reconfiguration-based programmable gain amplifier[J]. IEEE Trans Circuits Syst Ⅱ, Express Briefs, 2009, 56(9): 699. doi: 10.1109/TCSII.2009.2027958

[6]

Calvo B, Celma S, Aznar F. Low-voltage CMOS programmable gain amplifier for UHF applications[J]. Electron Lett, 2007, 43(20): 1087. doi: 10.1049/el:20071140

[7]

Lazavi B. Design of integrated circuits for optical communications. Boston:McGraw-Hill, 2003

[8]

Iwon K, Lee K. An accurate behavioral model for RF MOSFET linearity analysis[J]. IEEE Microw Wireless Compon Lett, 2007, 17(12): 897. doi: 10.1109/LMWC.2007.910518

[9]

Bastos J, Steyaert M, Sansen W. A high yield 12-bit 250-MS/s CMOS D/A converter[J]. IEEE Custom Integrated Circuits Conference, 1996: 431.

[10]

Haines G W, Mataya J A, Marshall S B. IF amplifier using Cc compensated transistors[J]. ISSCC Dig Tech Papers, 1968: 120.

[11]

Wang Y, Afshar B, Cheng T Y. A 2.5 mW inductorless wideband VGA with dual feedback DC-offset correction in 90 nm CMOS technology[J]. IEEE RFIC Symp Dig, 2008: 91.

[12]

D'Amico S, Spagnolo A, Donno A. A 9.5 mW analog baseband RX section for 60 GHz communications in 90 nm CMOS[J]. IEEE RFIC Symp Dig, 2011: 1.

[13]

Lee H D, Lee K A, Hong S. A wideband CMOS variable gain amplifier with an exponential gain control[J]. IEEE Trans Microwave Theory Tech, 2007, 55(6): 1363. doi: 10.1109/TMTT.2007.896787

[14]

Liu Chang, Yan Yuepeng, Goh Wangling. A 10-Gb/s inductor-less variable gain amplifier with a linear-in-dB characteristic and DC-offset cancellation[J]. Journal of Semiconductors, 2012, 33(8): 085003. doi: 10.1088/1674-4926/33/8/085003

[1]

Yoo S J, Ravindran A, Ismail M. A low voltage CMOS transresistance-based variable gain amplifier[J]. IEEE International Symposium on Circuits and Systems, 2004: 809.

[2]

Lin N, Fang F, Hong Z L. A CMOS broadband precise programmable gain amplifier with bandwidth extension technique[J]. IEEE Asian Solid-State Circuits Conference, 2011: 225.

[3]

Duong Q H, Le Q, Kim C W. A 95-dB linear low-power variable gain amplifier[J]. IEEE Trans Circuits Syst Ⅰ, Regular Papers, 2006, 47(8): 1648.

[4]

Nguyen H H, Duong Q H, Lee S G. 84 dB 5.2 mA digitally-controlled variable gain amplifier[J]. Electron Lett, 2008, 44(5): 344. doi: 10.1049/el:20080135

[5]

Nguyen H H, Nguyen H N, Lee J S. A binary-weighted switching and reconfiguration-based programmable gain amplifier[J]. IEEE Trans Circuits Syst Ⅱ, Express Briefs, 2009, 56(9): 699. doi: 10.1109/TCSII.2009.2027958

[6]

Calvo B, Celma S, Aznar F. Low-voltage CMOS programmable gain amplifier for UHF applications[J]. Electron Lett, 2007, 43(20): 1087. doi: 10.1049/el:20071140

[7]

Lazavi B. Design of integrated circuits for optical communications. Boston:McGraw-Hill, 2003

[8]

Iwon K, Lee K. An accurate behavioral model for RF MOSFET linearity analysis[J]. IEEE Microw Wireless Compon Lett, 2007, 17(12): 897. doi: 10.1109/LMWC.2007.910518

[9]

Bastos J, Steyaert M, Sansen W. A high yield 12-bit 250-MS/s CMOS D/A converter[J]. IEEE Custom Integrated Circuits Conference, 1996: 431.

[10]

Haines G W, Mataya J A, Marshall S B. IF amplifier using Cc compensated transistors[J]. ISSCC Dig Tech Papers, 1968: 120.

[11]

Wang Y, Afshar B, Cheng T Y. A 2.5 mW inductorless wideband VGA with dual feedback DC-offset correction in 90 nm CMOS technology[J]. IEEE RFIC Symp Dig, 2008: 91.

[12]

D'Amico S, Spagnolo A, Donno A. A 9.5 mW analog baseband RX section for 60 GHz communications in 90 nm CMOS[J]. IEEE RFIC Symp Dig, 2011: 1.

[13]

Lee H D, Lee K A, Hong S. A wideband CMOS variable gain amplifier with an exponential gain control[J]. IEEE Trans Microwave Theory Tech, 2007, 55(6): 1363. doi: 10.1109/TMTT.2007.896787

[14]

Liu Chang, Yan Yuepeng, Goh Wangling. A 10-Gb/s inductor-less variable gain amplifier with a linear-in-dB characteristic and DC-offset cancellation[J]. Journal of Semiconductors, 2012, 33(8): 085003. doi: 10.1088/1674-4926/33/8/085003

[1]

Yun Tinghua, Tang Shoulong, Shi Longxing. A Highly Linear CMOS IF Variable Gain Amplifier withExponential Gain Control. J. Semicond., 2006, 27(9): 1666.

[2]

Wang Ziqiang, Chi Baoyong, Wang Zhihua. A CMOS Wideband Variable Gain Amplifier. J. Semicond., 2005, 26(12): 2401.

[3]

Guo Feng, Li Zhiqun, Chen Dongdong, Li Haisong, Wang Zhigong. Design of a Wideband CMOS Variable Gain Amplifier. J. Semicond., 2007, 28(12): 1967.

[4]

Yiqiang Wu, Zhigong Wang, Junliang Wang, Li Ma, Jian Xu, Lu Tang. Lower-power, high-linearity class-AB current-mode programmable gain amplifier. J. Semicond., 2014, 35(10): 105003. doi: 10.1088/1674-4926/35/10/105003

[5]

Zheng Jiajie, Mo Taishan, Ma Chengyan, Yin Ming. A novel reconfigurable variable gain amplifier for a multi-mode multi-band receiver. J. Semicond., 2010, 31(7): 075011. doi: 10.1088/1674-4926/31/7/075011

[6]

Yun Gui, Xu Zhang, Yuan Wang, Ming Liu, Weihua Pei, Kai Liang, Suibiao Huang, Bin Li, Hongda Chen. A multi-channel fully differential programmable integrated circuit for neural recording application. J. Semicond., 2013, 34(10): 105009. doi: 10.1088/1674-4926/34/10/105009

[7]

Zhou Jiaye, Tan Xi, Wang Junyu, Tang Zhangwen, Min Hao. A 60-dB linear VGA with novel exponential gain approximation. J. Semicond., 2009, 30(6): 065006. doi: 10.1088/1674-4926/30/6/065006

[8]

Li Guofeng, Geng Zhiqing, Wu Nanjian. A low power automatic gain control loop for a receiver. J. Semicond., 2010, 31(9): 095009. doi: 10.1088/1674-4926/31/9/095009

[9]

Wenbo Wang, Luhong Mao, Xindong Xiao, Shilin Zhang, Sheng Xie. A differential automatic gain control circuit with two-stage-10 to 50 dB tuning range VGAs. J. Semicond., 2013, 34(2): 025008. doi: 10.1088/1674-4926/34/2/025008

[10]

Dong Qiao, Geng Li, Shao Zhibiao. A Low-Voltage,Low-Power CMOS High Dynamic Range dB-Linear VGA for Super Heterodyne Receivers. J. Semicond., 2007, 28(11): 1690.

[11]

Hongbing Wu, Jingyu Wang, Hongxia Liu. A 5 Gb/s CMOS adaptive equalizer for serial link. J. Semicond., 2018, 39(4): 045003. doi: 10.1088/1674-4926/39/4/045003

[12]

Xi Qin, Yumei Huang, Zhiliang Hong. A 6-7 GHz, 40 dB receiver RF front-end with 4.5 dB minimum noise figure in 0.13 μm CMOS for IR-UWB applications. J. Semicond., 2013, 34(3): 035006. doi: 10.1088/1674-4926/34/3/035006

[13]

Liu Yongpan, Yang Huazhong, Wang Hui. A Thermal-Conscious Integrated Circuit Power Model and Its Impact on Dynamic Voltage Scaling Techniques. J. Semicond., 2007, 28(4): 530.

[14]

Zhao Zhe, Zhou Feng, Huang Shengzhuan. All-CMOS temperature compensated current reference. J. Semicond., 2010, 31(6): 065016. doi: 10.1088/1674-4926/31/6/065016

[15]

Wu Zhaohui, Zhang Xu, Liang Zhiming, Li Bin. CMOS implementation of a low-power BPSK demodulator for wireless implantable neural command transmission. J. Semicond., 2012, 33(5): 055005. doi: 10.1088/1674-4926/33/5/055005

[16]

Zhang Hao, Li Zhiqun, Wang Zhigong, Zhang Li, Li Wei. A CMOS variable gain low-noise amplifier with ESD protection for 5 GHz applications. J. Semicond., 2010, 31(5): 055005. doi: 10.1088/1674-4926/31/5/055005

[17]

Yang Zhou, Wen Guangjun, Feng Xiao. A 2.5-V 56-mW baseband chain in a multistandard TV tuner for mobile and multimedia applications. J. Semicond., 2011, 32(3): 035003. doi: 10.1088/1674-4926/32/3/035003

[18]

Wei Zhu, Baoyong Chi, Lixue Kuang, Wen Jia, Zhihua Wang. An inductorless CMOS programmable-gain amplifier with a > 3 GHz bandwidth for 60 GHz wireless transceivers. J. Semicond., 2014, 35(10): 105001. doi: 10.1088/1674-4926/35/10/105001

[19]

Wang Keping, Wang Zhigong, Zhou Jianzheng, Lei Xuemei, Zhou Mingzhu. A novel low-noise linear-in-dB intermediate frequency variable-gain amplifier for DRM/DAB tuners. J. Semicond., 2009, 30(3): 035002. doi: 10.1088/1674-4926/30/3/035002

[20]

Li Guofeng, Wu Nanjian. A low power flexible PGA for software defined radio systems. J. Semicond., 2012, 33(5): 055006. doi: 10.1088/1674-4926/33/5/055006

Search

Advanced Search >>

GET CITATION

N Lin, F Fang, Z L Hong, H Fang. A 3.8 GHz programmable gain amplifier with a 0.1 dB gain step[J]. J. Semicond., 2014, 35(3): 035004. doi: 10.1088/1674-4926/35/3/035004.

Export: BibTex EndNote

Article Metrics

Article views: 681 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 31 July 2013 Manuscript revised: 12 October 2013 Online: Published: 01 March 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误