J. Semicond. > Volume 35 > Issue 6 > Article Number: 065001

A 2.4 GHz ultra-low power low-IF receiver and MUX-based transmitter for WPAN applications

Jingjing Chen , Weiyang Liu , Xiaodong Liu , Zhao Zhang , Liyuan Liu , Haiyong Wang and Nanjian Wu ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper presents a 2.4 GHz CMOS transceiver for the wireless personal area network (WPAN) integrated in 0.18 μm CMOS technology. This transceiver adopts a low-IF receiver, a MUX based transmitter and a fast-setting fractional-N frequency synthesizer. For achieving low cost and low power consumption, an inductor-less receiver front-end, an adaptive analog baseband, a low power MUX and a current-reused phase-locked loop (PLL) have been proposed in this work. Measured results show that the receiver achieves -8 dBm of ⅡP3 and 31 dB of image rejection. The transmitter delivers 0 dBm output power at a data rate of 2 Mbps. The current consumption is 7.2 mA in the receiving mode and 6.9 mA in the transmitting mode, respectively.

Key words: CMOSlow powerlow-IFMUXRF transceiverWPAN

Abstract: This paper presents a 2.4 GHz CMOS transceiver for the wireless personal area network (WPAN) integrated in 0.18 μm CMOS technology. This transceiver adopts a low-IF receiver, a MUX based transmitter and a fast-setting fractional-N frequency synthesizer. For achieving low cost and low power consumption, an inductor-less receiver front-end, an adaptive analog baseband, a low power MUX and a current-reused phase-locked loop (PLL) have been proposed in this work. Measured results show that the receiver achieves -8 dBm of ⅡP3 and 31 dB of image rejection. The transmitter delivers 0 dBm output power at a data rate of 2 Mbps. The current consumption is 7.2 mA in the receiving mode and 6.9 mA in the transmitting mode, respectively.

Key words: CMOSlow powerlow-IFMUXRF transceiverWPAN



References:

[1]

Retz G, Shanan H, Mulvaney K. A highly integrated low-power 2.4 GHz transceiver using a direct-conversion diversity receiver in 0.18μm CMOS for IEEE 802.15.4 WPAN[J]. IEEE ISSCC Dig Tech papers, 2009: 414.

[2]

Nguyen T K, Kim J, Seong N S. A low power CMOS transceiver for 915 MHz band IEEE 802.15.4b standard[J]. IEEE ASSCC Dig Tech Papers, 2007: 168.

[3]

Eol Y S, Yu H J, Song S S. A fully integrated 2.4 GHz low IF CMOS transceiver for 802.15.4 ZigBee applications[J]. IEEE ASSCC Dig Tech Papers, 2007: 175.

[4]

Balankutty A, Yu S A, Feng Y. A 0.6-V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4-GHz ISM-band applications[J]. IEEE J Solid-State Circuits, 2010, 34(12): 538.

[5]

Tedeschi M, Liscidini A, Castello R. Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications[J]. IEEE J Solid-State Circuits, 2010, 45(9): 1710. doi: 10.1109/JSSC.2010.2053861

[6]

Zhang Lingwei, Chi Baoyong, Qi Nan. A lower power reconfigurable multi-band transceiver for short-range communication[J]. Journal of Semiconductors, 2013, 34(3): 035008. doi: 10.1088/1674-4926/34/3/035008

[7]

Feng P, Li Y, Wu N. An ultra low power non-volatile memory in standard CMOS process for passive RFID tags[J]. IEEE Custom Integated Circuits Conference, 2009: 713.

[8]

Wu J, Jiang P, Chen D. A dual-band GNSS RF front end with a pseudo-differential LNA[J]. IEEE Trans Circuits Syst Ⅱ:Exp Briefs, 2011, 58(3): 134. doi: 10.1109/TCSII.2011.2106352

[9]

Lee S G, Choi J K. Current-reuse bleeding mixer[J]. Electron Lett, 2000, 36(8): 696. doi: 10.1049/el:20000556

[10]

Guthrie B, Hughes J, Sayers T. A CMOS gyrator low-IF filter for a dual-mode Bluetooth/ZigBee transceiver[J]. IEEE J Solid-State Circuits, 2005, 40(9): 1872. doi: 10.1109/JSSC.2005.848146

[11]

Liu L, Li D, Chen L. A 1 V 350μW 92 dB SNDR 24 kHz Δ Σ Modulator in 0.18μm CMOS[J]. IEEE ASSCC Dig Tech Papers, 2010.

[12]

Liu Y H, Li C L, Lin T H. A 200-pJ/b MUX-based RF transmitter for implantable multichannel neural recording[J]. IEEE Trans Microw Theory Tech, 2009, 57(10): 2533. doi: 10.1109/TMTT.2009.2029955

[13]

Kuang X F, Wu N J. A fast-settling PLL frequency synthesizer with direct frequency presetting[J]. IEEE ISSCC Dig Tech papers, 2006: 204.

[14]

Kwon Y I, Park S G, Park T J. An ultra low-power CMOS transceiv er using various low-power techniques for LR-WPAN applications[J]. IEEE Trans Circuits Syst Ⅰ, 2012, 59(2): 324. doi: 10.1109/TCSI.2011.2162463

[15]

Zhang L, Jiang H, Wei J. A reconfigurable sliding-IF transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN hubs with only 21% tuning range VCO[J]. IEEE J Solid-State Circuits, 2013, 48(11): 2705. doi: 10.1109/JSSC.2013.2274893

[16]

Raja M K, Chen X, Yan D L. A 18 mW Tx, 22 mW Rx transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-μm CMOS[J]. IEEE ASSCC Dig Tech Papers, 2010.

[1]

Retz G, Shanan H, Mulvaney K. A highly integrated low-power 2.4 GHz transceiver using a direct-conversion diversity receiver in 0.18μm CMOS for IEEE 802.15.4 WPAN[J]. IEEE ISSCC Dig Tech papers, 2009: 414.

[2]

Nguyen T K, Kim J, Seong N S. A low power CMOS transceiver for 915 MHz band IEEE 802.15.4b standard[J]. IEEE ASSCC Dig Tech Papers, 2007: 168.

[3]

Eol Y S, Yu H J, Song S S. A fully integrated 2.4 GHz low IF CMOS transceiver for 802.15.4 ZigBee applications[J]. IEEE ASSCC Dig Tech Papers, 2007: 175.

[4]

Balankutty A, Yu S A, Feng Y. A 0.6-V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4-GHz ISM-band applications[J]. IEEE J Solid-State Circuits, 2010, 34(12): 538.

[5]

Tedeschi M, Liscidini A, Castello R. Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications[J]. IEEE J Solid-State Circuits, 2010, 45(9): 1710. doi: 10.1109/JSSC.2010.2053861

[6]

Zhang Lingwei, Chi Baoyong, Qi Nan. A lower power reconfigurable multi-band transceiver for short-range communication[J]. Journal of Semiconductors, 2013, 34(3): 035008. doi: 10.1088/1674-4926/34/3/035008

[7]

Feng P, Li Y, Wu N. An ultra low power non-volatile memory in standard CMOS process for passive RFID tags[J]. IEEE Custom Integated Circuits Conference, 2009: 713.

[8]

Wu J, Jiang P, Chen D. A dual-band GNSS RF front end with a pseudo-differential LNA[J]. IEEE Trans Circuits Syst Ⅱ:Exp Briefs, 2011, 58(3): 134. doi: 10.1109/TCSII.2011.2106352

[9]

Lee S G, Choi J K. Current-reuse bleeding mixer[J]. Electron Lett, 2000, 36(8): 696. doi: 10.1049/el:20000556

[10]

Guthrie B, Hughes J, Sayers T. A CMOS gyrator low-IF filter for a dual-mode Bluetooth/ZigBee transceiver[J]. IEEE J Solid-State Circuits, 2005, 40(9): 1872. doi: 10.1109/JSSC.2005.848146

[11]

Liu L, Li D, Chen L. A 1 V 350μW 92 dB SNDR 24 kHz Δ Σ Modulator in 0.18μm CMOS[J]. IEEE ASSCC Dig Tech Papers, 2010.

[12]

Liu Y H, Li C L, Lin T H. A 200-pJ/b MUX-based RF transmitter for implantable multichannel neural recording[J]. IEEE Trans Microw Theory Tech, 2009, 57(10): 2533. doi: 10.1109/TMTT.2009.2029955

[13]

Kuang X F, Wu N J. A fast-settling PLL frequency synthesizer with direct frequency presetting[J]. IEEE ISSCC Dig Tech papers, 2006: 204.

[14]

Kwon Y I, Park S G, Park T J. An ultra low-power CMOS transceiv er using various low-power techniques for LR-WPAN applications[J]. IEEE Trans Circuits Syst Ⅰ, 2012, 59(2): 324. doi: 10.1109/TCSI.2011.2162463

[15]

Zhang L, Jiang H, Wei J. A reconfigurable sliding-IF transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN hubs with only 21% tuning range VCO[J]. IEEE J Solid-State Circuits, 2013, 48(11): 2705. doi: 10.1109/JSSC.2013.2274893

[16]

Raja M K, Chen X, Yan D L. A 18 mW Tx, 22 mW Rx transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-μm CMOS[J]. IEEE ASSCC Dig Tech Papers, 2010.

[1]

Heping Ma, Hua Xu, Bei Chen, Yin Shi. An ISM 2.4 GHz low power low-IF RF receiver front-end. J. Semicond., 2015, 36(8): 085002. doi: 10.1088/1674-4926/36/8/085002

[2]

Li Wenyuan, Wang Zhigong, . Low-Power CMOS IC for Function Electrical Stimulation of Nerves. J. Semicond., 2007, 28(3): 393.

[3]

Zhang Qi, Kuang Xiaofei, Wu Nanjian. An ultra-low-power RF transceiver for WBANs in medical applications. J. Semicond., 2011, 32(6): 065008. doi: 10.1088/1674-4926/32/6/065008

[4]

Li Bing, Zhuang Yiqi, Long Qiang, Jin Zhao, Li Zhenrong, Jin Gang. Design of a 0.18μm CMOS multi-band compatible low power GNSS receiver RF frontend. J. Semicond., 2011, 32(3): 035007. doi: 10.1088/1674-4926/32/3/035007

[5]

Liangbo Xie, Jiaxin Liu, Yao Wang, Guangjun Wen. A low-power CMOS smart temperature sensor for RFID application. J. Semicond., 2014, 35(11): 115002. doi: 10.1088/1674-4926/35/11/115002

[6]

Zhu Zhangming, Yang Yintang. A CMOS Flyback PWM Controller with Low No-Load Power Consumption. J. Semicond., 2008, 29(11): 2275.

[7]

Najam Muhammad Amin, Zhigong Wang, Zhiqun Li, Qin Li, Yang Liu. A low power, low noise figure quadrature demodulator for a 60 GHz receiver in 65-nm CMOS technology. J. Semicond., 2015, 36(4): 045005. doi: 10.1088/1674-4926/36/4/045005

[8]

Li Xuechu, Gao Qingyun, Qin Shicai. A Low-Power High-Frequency CMOS Peak Detector. J. Semicond., 2006, 27(10): 1707.

[9]

Ding Jingfeng, Wang Zhigong, Zhu En, Zhang Li, Wang Gui. 12Gb/s 0.25μm CMOS Low-Power 1∶4 Demultiplexer. J. Semicond., 2006, 27(1): 19.

[10]

Han Shuguang, Chi Baoyong, Wang Zhihua. A Novel Offset-Cancellation Technique for Low Voltage CMOS Differential Amplifiers. J. Semicond., 2006, 27(5): 778.

[11]

Xu Jian, Wang Zhigong, Niu Xiaokang. Design of high speed LVDS transceiver ICs. J. Semicond., 2010, 31(7): 075014. doi: 10.1088/1674-4926/31/7/075014

[12]

Zhang Cheng, Wang Lifang, Tan Xi, Min Hao. Adaptive IF selection and IQ mismatch compensation in a low-IF GSM receiver. J. Semicond., 2012, 33(6): 065005. doi: 10.1088/1674-4926/33/6/065005

[13]

Sun Yehui, Jiang Lixin, Qin Shicai. A Low Voltage Low Power CMOS 5Gb/s Transceiver. J. Semicond., 2007, 28(8): 1283.

[14]

Wang Honglai, Zhang Xiaoxing, Dai Yujie, Lü Yingjie, Toshimasa Matsuoka, Wang Jun, Kenji Taniguchi. A low-voltage low-power CMOS voltage reference based on subthreshold MOSFETs. J. Semicond., 2011, 32(8): 085009. doi: 10.1088/1674-4926/32/8/085009

[15]

Kai Tang, Qiao Meng, Zhigong Wang, Ting Guo. A low power 20 GHz comparator in 90 nm COMS technology. J. Semicond., 2014, 35(5): 055002. doi: 10.1088/1674-4926/35/5/055002

[16]

Binbin Wei, Jinguang Jiang. A low power high gain gain-controlled LNA + mixer for GNSS receivers. J. Semicond., 2013, 34(11): 115002. doi: 10.1088/1674-4926/34/11/115002

[17]

Fubin Xin, Tao Yin, Qisong Wu, Yuanlong Yang, Fei Liu, Haigang Yang. A low power 12-bit 1 Msps successive approximation register ADC with an improved switching procedure. J. Semicond., 2015, 36(8): 085007. doi: 10.1088/1674-4926/36/8/085007

[18]

Yao Jinke, Chi Baoyong, Wang Zhihua. A Novel Low Power ASK Receiver with AGC Loop. J. Semicond., 2007, 28(3): 337.

[19]

Pang Zegui, Zhuang Yiqi, Li Xiaoming, Li Jun. A Low-Voltage, High Efficiency Power Generation Structure for UHF RFID. J. Semicond., 2008, 29(2): 293.

[20]

Han Shuguang, Chi Baoyong, Wang Zhihua. A 2.4GHz Low Power ASK Transmitter for Wireless Capsule Endoscope Applications. J. Semicond., 2006, 27(6): 988.

Search

Advanced Search >>

GET CITATION

J J Chen, W Y Liu, X D Liu, Z Zhang, L Y Liu, H Y Wang, N J Wu. A 2.4 GHz ultra-low power low-IF receiver and MUX-based transmitter for WPAN applications[J]. J. Semicond., 2014, 35(6): 065001. doi: 10.1088/1674-4926/35/6/065001.

Export: BibTex EndNote

Article Metrics

Article views: 910 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 16 December 2013 Manuscript revised: 06 January 2014 Online: Published: 01 June 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误