J. Semicond. > Volume 35 > Issue 7 > Article Number: 074006

Self-aligned graphene field-effect transistors on SiC (0001) substrates with self-oxidized gate dielectric

Jia Li 1, , Cui Yu 1, , Li Wang 2, , Qingbin Liu 1, , Zezhao He 1, , Shujun Cai 1, and Zhihong Feng 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A scalable self-aligned approach is employed to fabricate monolayer graphene field-effect transistors on semi-insulated 4H-SiC (0001) substrates. The self-aligned process minimized access resistance and parasitic capacitance. Self-oxidized Al2O3, formed by deposition of 2 nm Al followed by exposure in air to be oxidized, is used as gate dielectric and shows excellent insulation. An intrinsic cutoff frequency of 34 GHz and maximum oscillation frequency of 36.4 GHz are realized for the monolayer graphene field-effect transistor with a gate length of 0.2 μm. These studies show a pathway to fabricate graphene transistors for future applications in ultra-high frequency circuits.

Key words: graphemeself-alignedtransistors

Abstract: A scalable self-aligned approach is employed to fabricate monolayer graphene field-effect transistors on semi-insulated 4H-SiC (0001) substrates. The self-aligned process minimized access resistance and parasitic capacitance. Self-oxidized Al2O3, formed by deposition of 2 nm Al followed by exposure in air to be oxidized, is used as gate dielectric and shows excellent insulation. An intrinsic cutoff frequency of 34 GHz and maximum oscillation frequency of 36.4 GHz are realized for the monolayer graphene field-effect transistor with a gate length of 0.2 μm. These studies show a pathway to fabricate graphene transistors for future applications in ultra-high frequency circuits.

Key words: graphemeself-alignedtransistors



References:

[1]

Geim A K, Novoselov K S. The rise of graphene[J]. Nature Mater, 2007, 6: 183. doi: 10.1038/nmat1849

[2]

Booth T J, Blake P, Nair R R. Macroscopic graphene membranes and their extraordinary stiffness[J]. Nano Lett, 2008, 8(8): 2442. doi: 10.1021/nl801412y

[3]

Cheng R, Bai J W, Liao L. High-frequency self-aligned graphene transistors with transferred gate stacks[J]. PNAS, 2012, 109(29): 11588. doi: 10.1073/pnas.1205696109

[4]

Liao L, Lin Y C, Bao M Q. High-speed graphene transistors with a self-aligned nanowire gate[J]. Nature, 2010, 467: 305. doi: 10.1038/nature09405

[5]

Badmaev A, Che Y C, Li Z. Self-aligned fabrication of graphene RF transistors with T-shaped gate[J]. ACS Nano, 2012, 4: 3371.

[6]

First P N, de Heer W A, Seyller T. Epitaxial graphenes on silicon carbide[J]. MRS Bull, 2010, 35: 296. doi: 10.1557/mrs2010.552

[7]

Ray N, Shallcross S, Hensel S. Buffer layer limited conductivity in epitaxial graphene on the Si face of SiC[J]. Phys Rev B, 2012, 86: 125426. doi: 10.1103/PhysRevB.86.125426

[8]

Lin Y M, Farmer D B, Jenkins K A. Enhanced performance in epitaxial graphene FETs with optimized channel morphology[J]. IEEE, 2011, 32(10): 1343.

[9]

Ni Z, Wang Y, Yu T. Raman spectroscopy and imaging of graphene[J]. Nano Res, 2008, 1(4): 273. doi: 10.1007/s12274-008-8036-1

[10]

Lee D S, Riedl C, Krauss B. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2[J]. Nano Lett, 2008, 8(12): 4320. doi: 10.1021/nl802156w

[11]

Lin Y M, Dimitrakopoulos C, Jenkins K A. 100-GHz Transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327: 662. doi: 10.1126/science.1184289

[12]

Wu Y Q, Lin Y M, Jenkins K A, et al. RF performance of short channel graphene field-effect transistor. IEDM, 2010: 9. 6. 1

[13]

Fiori G, Iannaccone G. Insights on radio frequency bilayer graphene FETs. IEDM, 2012: 17. 3. 1

[14]

Guo Z L, Dong R, Chakraborty P S. Record maximum oscillation frequency in C-face epitaxial graphene transistors[J]. Nano Lett, 2013, 13(3): 942. doi: 10.1021/nl303587r

[15]

Bai J W, Liao L, Zhou H L. Top-gated chemical vapor deposition grown graphene transistors with current saturation[J]. Nano Lett, 2011, 11(6): 2555. doi: 10.1021/nl201331x

[16]

Xu H L, Zhang Z Y, Xu H T. Top-gated graphene field-effect transistors with high normalized transconductance and designable Dirac point voltage[J]. ACS Nano, 2011, 5(6): 5031. doi: 10.1021/nn201115p

[17]

Badmaev A, Che Y, Li Z. Self-aligned fabrication of graphene RF transistors with T-shaped gate[J]. Acs Nano, 2012, 6: 3371. doi: 10.1021/nn300393c

[18]

Kim K, Choi J Y, Kim T. A role for graphene in silicon-based semiconductor devices[J]. Nature, 2011, 479: 338. doi: 10.1038/nature10680

[1]

Geim A K, Novoselov K S. The rise of graphene[J]. Nature Mater, 2007, 6: 183. doi: 10.1038/nmat1849

[2]

Booth T J, Blake P, Nair R R. Macroscopic graphene membranes and their extraordinary stiffness[J]. Nano Lett, 2008, 8(8): 2442. doi: 10.1021/nl801412y

[3]

Cheng R, Bai J W, Liao L. High-frequency self-aligned graphene transistors with transferred gate stacks[J]. PNAS, 2012, 109(29): 11588. doi: 10.1073/pnas.1205696109

[4]

Liao L, Lin Y C, Bao M Q. High-speed graphene transistors with a self-aligned nanowire gate[J]. Nature, 2010, 467: 305. doi: 10.1038/nature09405

[5]

Badmaev A, Che Y C, Li Z. Self-aligned fabrication of graphene RF transistors with T-shaped gate[J]. ACS Nano, 2012, 4: 3371.

[6]

First P N, de Heer W A, Seyller T. Epitaxial graphenes on silicon carbide[J]. MRS Bull, 2010, 35: 296. doi: 10.1557/mrs2010.552

[7]

Ray N, Shallcross S, Hensel S. Buffer layer limited conductivity in epitaxial graphene on the Si face of SiC[J]. Phys Rev B, 2012, 86: 125426. doi: 10.1103/PhysRevB.86.125426

[8]

Lin Y M, Farmer D B, Jenkins K A. Enhanced performance in epitaxial graphene FETs with optimized channel morphology[J]. IEEE, 2011, 32(10): 1343.

[9]

Ni Z, Wang Y, Yu T. Raman spectroscopy and imaging of graphene[J]. Nano Res, 2008, 1(4): 273. doi: 10.1007/s12274-008-8036-1

[10]

Lee D S, Riedl C, Krauss B. Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2[J]. Nano Lett, 2008, 8(12): 4320. doi: 10.1021/nl802156w

[11]

Lin Y M, Dimitrakopoulos C, Jenkins K A. 100-GHz Transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327: 662. doi: 10.1126/science.1184289

[12]

Wu Y Q, Lin Y M, Jenkins K A, et al. RF performance of short channel graphene field-effect transistor. IEDM, 2010: 9. 6. 1

[13]

Fiori G, Iannaccone G. Insights on radio frequency bilayer graphene FETs. IEDM, 2012: 17. 3. 1

[14]

Guo Z L, Dong R, Chakraborty P S. Record maximum oscillation frequency in C-face epitaxial graphene transistors[J]. Nano Lett, 2013, 13(3): 942. doi: 10.1021/nl303587r

[15]

Bai J W, Liao L, Zhou H L. Top-gated chemical vapor deposition grown graphene transistors with current saturation[J]. Nano Lett, 2011, 11(6): 2555. doi: 10.1021/nl201331x

[16]

Xu H L, Zhang Z Y, Xu H T. Top-gated graphene field-effect transistors with high normalized transconductance and designable Dirac point voltage[J]. ACS Nano, 2011, 5(6): 5031. doi: 10.1021/nn201115p

[17]

Badmaev A, Che Y, Li Z. Self-aligned fabrication of graphene RF transistors with T-shaped gate[J]. Acs Nano, 2012, 6: 3371. doi: 10.1021/nn300393c

[18]

Kim K, Choi J Y, Kim T. A role for graphene in silicon-based semiconductor devices[J]. Nature, 2011, 479: 338. doi: 10.1038/nature10680

[1]

Yingchun Fu, Xiaofeng Wang, Liuhong Ma, Yaling Zhou, Xiang Yang, Xiaodong Wang, Fuhua Yang. High quality metal-quantum dot-metal structure fabricated with a highly compatible self-aligned process. J. Semicond., 2015, 36(12): 123004. doi: 10.1088/1674-4926/36/12/123004

[2]

Yu Jinyong, Yan Beiping, Su Shubing, Liu Xunchun, Wang Runmei, Xu Anhuai, Qi Ming, Liu Xinyu. A 162GHz Self-Aligned InP/InGaAs Heterojunction Bipolar Transistor. J. Semicond., 2006, 27(10): 1732.

[3]

Yao Fei, Cheng Buwen, Xue Chunlai, Wang Qiming. Over Wet-Etching Self-Aligned Ion Implantation Doping Technology on Fabricating SiGe/Si HBT. J. Semicond., 2005, 26(S1): 117.

[4]

Cao Yanrong, Ma Xiaohua, Hao Yue, Yu Lei. Characteristics of Groove-Gate MOSFETs. J. Semicond., 2006, 27(11): 1994.

[5]

Yang Wei, Liu Xunchun, , Zhu Min, Wang Runmei. Fabrication of a New-Layout InGaP/GaAs HBT. J. Semicond., 2006, 27(9): 1604.

[6]

Li Xianjie, Cai Daomin, Zhao Yonglin, Wang Quanshu, Zhou Zhou, Zeng Qingming. Design and Process for Self-Aligned InP/InGaAs SHBT Structure. J. Semicond., 2005, 26(S1): 136.

[7]

Su Shubing, Liu Xunchun, Liu Xinyu, Yu Jinyong, Wang Runmei, Xu Anhuai, Qi Ming. Performance of a Self-Aligned InP/GaInAs SHBT with a Novel T-Shaped Emitter. J. Semicond., 2006, 27(3): 434.

[8]

Dong Yaoqi, Kong Weiran, Nhan Do, Wang Shiuh-Luen, Lee Gabriel. Erase voltage impact on 0.18 μm triple self-aligned split-gate flash memory endurance. J. Semicond., 2010, 31(6): 064012. doi: 10.1088/1674-4926/31/6/064012

[9]

Zhijie Wang. Scalable fabrication of geometry-tunable self-aligned superlattice photonic crystals for spectrum-programmable light trapping. J. Semicond., 2019, 40(5): 050201. doi: 10.1088/1674-4926/40/5/050201

[10]

Li ZhiYang, Li Yuntao, Liu Jingwei, Chen Shaowu, Yu Jinzhong. Compact Blocking 8×8 Optical Matrix Switch on S01 with Taper Waveguides and Self-Aligned Total Internal Reflection Mirrors. J. Semicond., 2007, 28(S1): 516.

[11]

Bin Li, Lan Wei, Cai Wen. Static characteristics and short channel effect in enhancement-mode AlN/GaN/AlN N-polar MISFET with self-aligned source/drain regions. J. Semicond., 2014, 35(12): 124006. doi: 10.1088/1674-4926/35/12/124006

[12]

Dai Zhenqing, Chen Changxin, Zhang Yaozhong, Wei Liangming, Zhang Jing, Xu Dong, Zhang Yafei. ZnO nanowire network transistors based on a self-assembly method. J. Semicond., 2012, 33(8): 084003. doi: 10.1088/1674-4926/33/8/084003

[13]

Deng Wanling, Zheng Xueren. Modeling of self-heating effects in polycrystalline silicon thin film transistors. J. Semicond., 2009, 30(7): 074002. doi: 10.1088/1674-4926/30/7/074002

[14]

Liu Zhaojun, Meng Zhiguo, Zhao Sunyun, Wong Man, Kwok H S, Wu Chunya, Xiong Shaozhen. Metal Induced Lateral Crystallization Poly-Si Thin Film Transistors of Self-Released Nickel Source. J. Semicond., 2008, 29(10): 2009.

[15]

Zhefeng Li, Xianye Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors. J. Semicond., 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004

[16]

Liu Ge, Liu Ming, Shang Liwei, Tu Deyu, Liu Xinghua, Wang Hong, Liu Jiang. Active layer self-protection process for organic field-effect transistors. J. Semicond., 2009, 30(9): 094006. doi: 10.1088/1674-4926/30/9/094006

[17]

Liyuan Yang, Shan Ai, Yonghe Chen, Mengyi Cao, Kai Zhang, Xiaohua Ma, Yue Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005

[18]

Zeng Yuxin, Liu Wei, Yang Fuhua, Xu Ping, Zhang Hao, Bian Lifeng, Tan Pingheng, Zheng Houzhi, Zeng Yiping. Optical and Electrical Investigation of Embedded Self-Assembled InAs Quantum Dot Modulation Doped Field-Effect-Transistors. J. Semicond., 2005, 26(S1): 238.

[19]

Lei Shi, Shiwei Feng, Kun Liu, Yamin Zhang. Mechanism of the self-changing parameters and characteristics in AlGaN/GaN high-electron mobility transistors after a step voltage stress. J. Semicond., 2015, 36(7): 074005. doi: 10.1088/1674-4926/36/7/074005

[20]

Haochun Qi, Changzhi Lü, Xiaoling Zhang, Xuesong Xie. Accelerating the life of transistors. J. Semicond., 2013, 34(6): 064010. doi: 10.1088/1674-4926/34/6/064010

Search

Advanced Search >>

GET CITATION

J Li, C Yu, L Wang, Q B Liu, Z Z He, S J Cai, Z H Feng. Self-aligned graphene field-effect transistors on SiC (0001) substrates with self-oxidized gate dielectric[J]. J. Semicond., 2014, 35(7): 074006. doi: 10.1088/1674-4926/35/7/074006.

Export: BibTex EndNote

Article Metrics

Article views: 1471 Times PDF downloads: 18 Times Cited by: 0 Times

History

Manuscript received: 05 November 2013 Manuscript revised: 19 December 2013 Online: Published: 01 July 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误