J. Semicond. > Volume 35 > Issue 7 > Article Number: 074014

Analysis of reliability factors of MEMS disk resonator under the strong inertial impact

Linxi Dong 1, 2, , , Quan Yu 1, , Jinyan Bao 1, and Jiaping Tao 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Increasing the bias voltage is a method of reducing the motional resistance of the capacitive disk resonator to match the impedance of the RF circuit. But there are few reports on the study of reliable working range of bias voltage under the shock and vibration environment. Therefore, the reliability of disk resonator under the step and pulse acceleration impact respectively is systematically analyzed in this paper. By the expression of the biggest inertial acceleration the disk can bear under the reliable condition, the maximal reliable range curves of the disk resonator under the dynamic impact environment are obtained. According to the actual sizes of disk in the literature, it can be seen that when a step shock of 13000 g is supplied, the reliability range is reduced to 75% compared with the original state. For the pulse shock, the reliability range is related to the pulse amplitude and time width. Research of this paper can provide the basis for the selection of bias voltage of disk resonator under the inertial shock.

Key words: MEMS resonatorinertial impactbias voltagereliability

Abstract: Increasing the bias voltage is a method of reducing the motional resistance of the capacitive disk resonator to match the impedance of the RF circuit. But there are few reports on the study of reliable working range of bias voltage under the shock and vibration environment. Therefore, the reliability of disk resonator under the step and pulse acceleration impact respectively is systematically analyzed in this paper. By the expression of the biggest inertial acceleration the disk can bear under the reliable condition, the maximal reliable range curves of the disk resonator under the dynamic impact environment are obtained. According to the actual sizes of disk in the literature, it can be seen that when a step shock of 13000 g is supplied, the reliability range is reduced to 75% compared with the original state. For the pulse shock, the reliability range is related to the pulse amplitude and time width. Research of this paper can provide the basis for the selection of bias voltage of disk resonator under the inertial shock.

Key words: MEMS resonatorinertial impactbias voltagereliability



References:

[1]

Nguyen C T C. MEMS technologies for communications[J]. Nanotechnology Conference and Trade Show (Nanotech 2003), 2003: 723.

[2]

Li Yingliang, Pan Wu. MEMS resonators and filters in RF system[J]. Optics and Precision Engineering, 2004, 12(1): 47.

[3]

Li Li, Zhao Zhengping, Zhang Zhiguo. Development of a MEMS-based RF low-phase -noise voltage controlled oscillator[J]. Chinese Journal of Semiconductors, 2006, 27(5): 900.

[4]

Jia Yingxi, Zhao Zhengping, Yang Yongjun. SOI-based radial-contour-mode micromechanical disk resonator[J]. Journal of Semiconductors, 2011, 32(11): 115001. doi: 10.1088/1674-4926/32/11/115001

[5]

Gu Hongming, Lü Miao, Liang Chunguang. MEMS class E amplifier[J]. Chinese Journal of Semiconductors, 2003, 24(4): 401.

[6]

Akgul M, Nguyen C T C. Voltage-controlled tuning to optimize MEMS resonator array-composite output power[J]. Frequency Control and the European Frequency and Time Forum (FCS), 2011: 1.

[7]

Demirci M U, Nguyen C T C. Mechanically corner-coupled square microresonator array for reduced series motional resistance[J]. J Microelectromechan Syst, 2006: 1419.

[8]

Dong Linxi, Sun Lingling, Xu Xiaoliang. Effect of inertial shock on RF MEMS capacitive switches property in low vacuum[J]. Journal of Semiconductors, 2007, 28(4): 507.

[9]

Clark J R, Hsu W T, Abdelmoneum M A. High-Q UHF micromechanical radial-contour mode disk resonators[J]. J Microelectromechan Syst, 2005, 14(6): 1298. doi: 10.1109/JMEMS.2005.856675

[10]

Naing T L, Rocheleau T O, Ren Z. Vibration-insensitive 61-MHz micromechanical disk reference oscillator[J]. IEEE International Frequency Control Symposium (FCS), 2012: 1.

[11]

Dong Yonggui, Zhang Qi. Double parameter detection method of resonant sensor pulse[J]. Journal of Tsinghua University, 2009(5): 6603.

[12]

Alsaleem F M, Younis M I, Ouakad H M. On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators[J]. J Micromechan Microeng, 2009, 19(4): 045013. doi: 10.1088/0960-1317/19/4/045013

[13]

Wang Binglei, Zhou Shenjie, Zhao Junfeng. The size effect research of MEMS microstructure under electrostatic excitation[J]. Chinese Journal of Solid Mechanics, 2011, 32(6): 541.

[14]

Dong Qiaohua, Liao Xiaoping, Huang Qingan. Analysis of pull-in voltage of RF MEMS switches[J]. Journal of Semiconductors, 2008, 29(1): 163.

[15]

Xu Lin, Fang Yuming, Xi Junjian. The dynamic pull-in phenomenon in parallel-plate electrostatic microactuator[J]. Semicond Technol, 2012, 37(3): 176.

[16]

Bao Minhang, Sun Yuancheng, Sun Yiping. Reliable operation conditions of capacitive inertial sensor for step and shock signals[J]. The Eighth Sensitive Element and Sensor Academic Conference Proceedings, 2003: 112.

[17]

Bao Minhang. Analysis and design principles of MEMS devices[J]. Amsterdam: Elsevier, 2005: 44.

[18]

Yang Lin, Wei Changli. Enhancement of micromechanical resonator manufacturing precision via mechanically-coupled arraying[J]. Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (EFTF/IFCS 2009), 2009: 58.

[19]

Li Shengshian, Lin Yuwei, Ren Zeying. An MSI micromechanical differential disk-array filter[J]. Solid-State Sensors, Actuators and Microsystems Conference, 2007: 307.

[20]

Li Shengshian, Lin Yuwei, Ren Zeying. A micromechanical parallel-class disk-array filter[J]. Frequency Control Symposium, Joint with the 21st European Frequency and Time Forum, 2007: 1356.

[21]

Lin Y, Lee S, Li S. Series-resonant VHF micromechanical resonator reference oscillators[J]. IEEE J Solid-State Circuits, 2004, 39(12): 2477. doi: 10.1109/JSSC.2004.837086

[1]

Nguyen C T C. MEMS technologies for communications[J]. Nanotechnology Conference and Trade Show (Nanotech 2003), 2003: 723.

[2]

Li Yingliang, Pan Wu. MEMS resonators and filters in RF system[J]. Optics and Precision Engineering, 2004, 12(1): 47.

[3]

Li Li, Zhao Zhengping, Zhang Zhiguo. Development of a MEMS-based RF low-phase -noise voltage controlled oscillator[J]. Chinese Journal of Semiconductors, 2006, 27(5): 900.

[4]

Jia Yingxi, Zhao Zhengping, Yang Yongjun. SOI-based radial-contour-mode micromechanical disk resonator[J]. Journal of Semiconductors, 2011, 32(11): 115001. doi: 10.1088/1674-4926/32/11/115001

[5]

Gu Hongming, Lü Miao, Liang Chunguang. MEMS class E amplifier[J]. Chinese Journal of Semiconductors, 2003, 24(4): 401.

[6]

Akgul M, Nguyen C T C. Voltage-controlled tuning to optimize MEMS resonator array-composite output power[J]. Frequency Control and the European Frequency and Time Forum (FCS), 2011: 1.

[7]

Demirci M U, Nguyen C T C. Mechanically corner-coupled square microresonator array for reduced series motional resistance[J]. J Microelectromechan Syst, 2006: 1419.

[8]

Dong Linxi, Sun Lingling, Xu Xiaoliang. Effect of inertial shock on RF MEMS capacitive switches property in low vacuum[J]. Journal of Semiconductors, 2007, 28(4): 507.

[9]

Clark J R, Hsu W T, Abdelmoneum M A. High-Q UHF micromechanical radial-contour mode disk resonators[J]. J Microelectromechan Syst, 2005, 14(6): 1298. doi: 10.1109/JMEMS.2005.856675

[10]

Naing T L, Rocheleau T O, Ren Z. Vibration-insensitive 61-MHz micromechanical disk reference oscillator[J]. IEEE International Frequency Control Symposium (FCS), 2012: 1.

[11]

Dong Yonggui, Zhang Qi. Double parameter detection method of resonant sensor pulse[J]. Journal of Tsinghua University, 2009(5): 6603.

[12]

Alsaleem F M, Younis M I, Ouakad H M. On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators[J]. J Micromechan Microeng, 2009, 19(4): 045013. doi: 10.1088/0960-1317/19/4/045013

[13]

Wang Binglei, Zhou Shenjie, Zhao Junfeng. The size effect research of MEMS microstructure under electrostatic excitation[J]. Chinese Journal of Solid Mechanics, 2011, 32(6): 541.

[14]

Dong Qiaohua, Liao Xiaoping, Huang Qingan. Analysis of pull-in voltage of RF MEMS switches[J]. Journal of Semiconductors, 2008, 29(1): 163.

[15]

Xu Lin, Fang Yuming, Xi Junjian. The dynamic pull-in phenomenon in parallel-plate electrostatic microactuator[J]. Semicond Technol, 2012, 37(3): 176.

[16]

Bao Minhang, Sun Yuancheng, Sun Yiping. Reliable operation conditions of capacitive inertial sensor for step and shock signals[J]. The Eighth Sensitive Element and Sensor Academic Conference Proceedings, 2003: 112.

[17]

Bao Minhang. Analysis and design principles of MEMS devices[J]. Amsterdam: Elsevier, 2005: 44.

[18]

Yang Lin, Wei Changli. Enhancement of micromechanical resonator manufacturing precision via mechanically-coupled arraying[J]. Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (EFTF/IFCS 2009), 2009: 58.

[19]

Li Shengshian, Lin Yuwei, Ren Zeying. An MSI micromechanical differential disk-array filter[J]. Solid-State Sensors, Actuators and Microsystems Conference, 2007: 307.

[20]

Li Shengshian, Lin Yuwei, Ren Zeying. A micromechanical parallel-class disk-array filter[J]. Frequency Control Symposium, Joint with the 21st European Frequency and Time Forum, 2007: 1356.

[21]

Lin Y, Lee S, Li S. Series-resonant VHF micromechanical resonator reference oscillators[J]. IEEE J Solid-State Circuits, 2004, 39(12): 2477. doi: 10.1109/JSSC.2004.837086

[1]

Maisagalla Gopal, Atul Awadhiya, Nandakishor Yadav, S. K. Vishvakarma, Vaibhav Neema. Impact of varying carbon concentration in SiC S/D asymmetric dual-k spacer for high performance and reliable FinFET. J. Semicond., 2018, 39(10): 104001. doi: 10.1088/1674-4926/39/10/104001

[2]

Chen Yu, Wang Liangchen, Yi Xiaoyan, Wang Libin, Liu Zhiqiang, Ma Long, Yan Lihong. Analyses in Reliability of GaN-Based High Power Light Emitting Diodes. J. Semicond., 2007, 28(S1): 500.

[3]

Bin Zhang, Xiaokuo Yang, Jiahao Liu, Weiwei Li, Jie Xu. Reliability analysis of magnetic logic interconnect wire subjected to magnet edge imperfections. J. Semicond., 2018, 39(2): 024004. doi: 10.1088/1674-4926/39/2/024004

[4]

Tian Wang, Xiaoxin Cui, Yewen Ni, Kai Liao, Nan Liao, Dunshan Yu, Xiaole Cui. Reliability evaluation of high-performance, low-power FinFET standard cells based on mixed RBB/FBB technique. J. Semicond., 2017, 38(4): 044005. doi: 10.1088/1674-4926/38/4/044005

[5]

Yao Xiaojiang, Pu Yan, Liu Xinyu, Wu Weichao. Characterization and Reliability of Thin Film Resistors for MMICs Application Based on AlGaN/GaN HEMTs. J. Semicond., 2008, 29(7): 1246.

[6]

Xiangming Xu, Jingfeng Huang, Han Yu, Wensheng Qian, Zhengliang Zhou, Bo Han, Yong Wang, Pengfei Wang, Zhang Wei. Design of high reliability RF-LDMOS by suppressing the parasitic bipolar effect using enhanced p-well and double epitaxy. J. Semicond., 2015, 36(6): 064013. doi: 10.1088/1674-4926/36/6/064013

[7]

Dezhao Yu, Qiwen Zheng, Jiangwei Cui, Hang Zhou, Xuefeng Yu, Qi Guo. Total dose responses and reliability issues of 65 nm NMOSFETs. J. Semicond., 2016, 37(6): 064016. doi: 10.1088/1674-4926/37/6/064016

[8]

Li Yuntao, Yu Jinzhong, Li ZhiYang, Chen Shaowu. High-Reliability 16×16 SOI Thermo-Optic Switch Matrix’. J. Semicond., 2007, 28(S1): 513.

[9]

Xin Weiping, Zhuang Yiqi, Li Xiaoming. An embeddable SOC real-time prediction technology for TDDB. J. Semicond., 2012, 33(11): 115009. doi: 10.1088/1674-4926/33/11/115009

[10]

Zhang Shuang, Guo Shuxu, Guo Xin, Cao Junsheng, Gao Fengli, Shan Jiangdong, Ren Ruizhi. Extrinsic Ideality Factor of Laser Array. J. Semicond., 2007, 28(5): 768.

[11]

Zhigang Wang, Bo Zhang, Zhaoji Li. Analysis of OFF-state and ON-state performance in a silicon-on-insulator power MOSFET with a low-k dielectric trench. J. Semicond., 2013, 34(7): 074006. doi: 10.1088/1674-4926/34/7/074006

[12]

Bao Li, Bao Junlin, Zhuang Yiqi. A Method for Locating the Position of an Oxide Trap in a MOSFET by RTS Noise. J. Semicond., 2006, 27(8): 1426.

[13]

Ma Canghai, Liao Guanglan, Shi Tielin, Tang Zirong, Liu Shiyuan, Nie Lei, Lin Xiaohui. Wafer Direct Bonding Based on UV Exposure. J. Semicond., 2008, 29(7): 1369.

[14]

Zhen Yang, Jinyan Wang, Zhe Xu, Xiaoping Li, Bo Zhang, Maojun Wang, Min Yu, Jincheng Zhang, Xiaohua Ma, Yongbing Li. Analysis of AlGaN/GaN high electron mobility transistors failure mechanism under semi-on DC stress. J. Semicond., 2014, 35(1): 014007. doi: 10.1088/1674-4926/35/1/014007

[15]

A. Divay, O. Latry, C. Duperrier, F. Temcamani. Ageing of GaN HEMT devices:which degradation indicators?. J. Semicond., 2016, 37(1): 014001. doi: 10.1088/1674-4926/37/1/014001

[16]

Ningning Sun, Manqing Tan, Ping Li, Jian Jiao, Xiaofeng Guo, Wentao Guo. Long-term storage life of light source modules by temperature cycling accelerated life test. J. Semicond., 2014, 35(5): 054010. doi: 10.1088/1674-4926/35/5/054010

[17]

Zhang Yuezong, Feng Shiwei, Xie Xuesong, Li Ying, Yang Ji, Sun Jingying, Lü Changzhi. Study of Thermal Characteristics of Semiconductor Light-Emitting Devices. J. Semicond., 2006, 27(2): 350.

[18]

Fengxiang Wang, Quan Yuan, Xiao Kan, Jicong Zhao, Zeji Chen, Jinling Yang, Fuhua Yang. Reliability testing of a 3D encapsulated VHF MEMS resonator. J. Semicond., 2018, 39(10): 104008. doi: 10.1088/1674-4926/39/10/104008

[19]

Lin Xiaoqin, Zhu Dapeng, Luo Le. Micro-Sized SnAg Solder Bumping Technology and Bonding Reliability. J. Semicond., 2008, 29(1): 168.

[20]

Gao Wei, Guo Weiling, Zhu Yanxu, Jiang Wenjing, Shen Guangdi. Reliability of AlGaInP light emitting diodes with an ITO current spreading layer. J. Semicond., 2009, 30(6): 064004. doi: 10.1088/1674-4926/30/6/064004

Search

Advanced Search >>

GET CITATION

L X Dong, Q Yu, J Y Bao, J P Tao. Analysis of reliability factors of MEMS disk resonator under the strong inertial impact[J]. J. Semicond., 2014, 35(7): 074014. doi: 10.1088/1674-4926/35/7/074014.

Export: BibTex EndNote

Article Metrics

Article views: 742 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 02 December 2013 Manuscript revised: 27 December 2013 Online: Published: 01 July 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误