J. Semicond. > Volume 35 > Issue 7 > Article Number: 075004

A broadband regenerative frequency divider in InGaP/GaAs HBT technology

Jincan Zhang , Yuming Zhang , Hongliang Lü , , Yimen Zhang , Min Liu , Yinghui Zhong and Zheng Shi

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A dynamic divide-by-two regenerative frequency divider (RFD) is presented in a 60-GHz-fT InGaP/GaAs heterojunction bipolar transistors (HBTs) technology. To achieve high operation bandwidth, active loads instead of resistor loads are incorporated into the RFD. On-wafer measurement shows that the divider is operating from 10 GHz up to at least 40 GHz, limited by the available input frequency. The maximum operation frequency of the divider is found to be much higher than fT/2 of the transistor, and also the divider has excellent input sensitivity. The divider consumes 300.85 mW from 5 V supply and occupies an area of 0.47×0.22 mm2.

Key words: regenerative frequency dividerInGaP/GaAs HBTactive loadsbroadband

Abstract: A dynamic divide-by-two regenerative frequency divider (RFD) is presented in a 60-GHz-fT InGaP/GaAs heterojunction bipolar transistors (HBTs) technology. To achieve high operation bandwidth, active loads instead of resistor loads are incorporated into the RFD. On-wafer measurement shows that the divider is operating from 10 GHz up to at least 40 GHz, limited by the available input frequency. The maximum operation frequency of the divider is found to be much higher than fT/2 of the transistor, and also the divider has excellent input sensitivity. The divider consumes 300.85 mW from 5 V supply and occupies an area of 0.47×0.22 mm2.

Key words: regenerative frequency dividerInGaP/GaAs HBTactive loadsbroadband



References:

[1]

Ma K, Mou S, Yeo K S. A miniaturized millimeter-wave standing-wave filtering switch with high P1dB[J]. IEEE Trans Microw Theory Tech, 2013, 61(4): 1505. doi: 10.1109/TMTT.2013.2250994

[2]

Lee O, Kim J G, Lim K. A 60-GHz push-push InGaP HBT VCO with dynamic frequency divider[J]. IEEE Microw Wireless Compon Lett, 2005, 15(10): 679. doi: 10.1109/LMWC.2005.856847

[3]

Chao Y, Luong H C. Analysis and design of a 2.9-mW 53.4-79.4-GHz frequency-tracking injection-locked frequency divider in 65-nm CMOS[J]. IEEE J Solid-State Circuits, 2013, 48(10): 2403. doi: 10.1109/JSSC.2013.2272371

[4]

Wu L, Luong H C. Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting[J]. IEEE Trans Circuits Syst I: Regular Papers, 2013, 60(8): 2001. doi: 10.1109/TCSI.2013.2256240

[5]

Liu G, Schumacher H. Design and comparison of regenerative dynamic frequency dividers in different configurations using SiGe HBT technology[J]. IEEE Microw Wireless Compon Lett, 2013, 23(5): 270. doi: 10.1109/LMWC.2013.2253312

[6]

Nakamura T, Masuda T, Shiramizu N. A 1.1-V regulator-stabilized 21.4-GHz VCO and a 115% frequency-range dynamic divider for K-band wireless communication[J]. IEEE Trans Microw Theory Tech, 2012, 60(9): 2823. doi: 10.1109/TMTT.2012.2206400

[7]

Zhong Yinghui, Su Yongbo, Jin Zhi. An InGaAs/InP W-band dynamic frequency divider[J]. Journal of Infrared and Millimeter Waves, 2012, 31(5): 393. doi: 10.3724/SP.J.1010.2012.00393

[8]

Wei H J, Meng C, Chang Y W. 9.5 GHz GaInP/GaAs HBT divide-by-two frequency divider using super-dynamic D-type flip-flop technique[J]. Electron Lett, 2007, 43(13): 1.

[9]

Shin H, Won B. A 4.5 to 9.2-GHz wideband semidynamic frequency divide-by-1.5 in GaInP/GaAs HBT[J]. IEEE Microw Wireless Compon Lett, 2007, 17(1): 73. doi: 10.1109/LMWC.2006.887280

[10]

Zhang Jincan, Zhang Yuming, Lu Hongliang. A novel model for implementation of gamma radiation effects in GaAs HBTs[J]. IEEE Trans Microw Theory Tech, 2012, 60(12): 3693. doi: 10.1109/TMTT.2012.2221137

[11]

Vuppala S, Li C S, Zwicknagl P. Neutron, proton, and electron irradiation effects in InGaP/GaAs single heterojunction bipolar transistors[J]. IEEE Trans Nucl Sci, 2003, 50(6): 1846. doi: 10.1109/TNS.2003.820765

[1]

Ma K, Mou S, Yeo K S. A miniaturized millimeter-wave standing-wave filtering switch with high P1dB[J]. IEEE Trans Microw Theory Tech, 2013, 61(4): 1505. doi: 10.1109/TMTT.2013.2250994

[2]

Lee O, Kim J G, Lim K. A 60-GHz push-push InGaP HBT VCO with dynamic frequency divider[J]. IEEE Microw Wireless Compon Lett, 2005, 15(10): 679. doi: 10.1109/LMWC.2005.856847

[3]

Chao Y, Luong H C. Analysis and design of a 2.9-mW 53.4-79.4-GHz frequency-tracking injection-locked frequency divider in 65-nm CMOS[J]. IEEE J Solid-State Circuits, 2013, 48(10): 2403. doi: 10.1109/JSSC.2013.2272371

[4]

Wu L, Luong H C. Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting[J]. IEEE Trans Circuits Syst I: Regular Papers, 2013, 60(8): 2001. doi: 10.1109/TCSI.2013.2256240

[5]

Liu G, Schumacher H. Design and comparison of regenerative dynamic frequency dividers in different configurations using SiGe HBT technology[J]. IEEE Microw Wireless Compon Lett, 2013, 23(5): 270. doi: 10.1109/LMWC.2013.2253312

[6]

Nakamura T, Masuda T, Shiramizu N. A 1.1-V regulator-stabilized 21.4-GHz VCO and a 115% frequency-range dynamic divider for K-band wireless communication[J]. IEEE Trans Microw Theory Tech, 2012, 60(9): 2823. doi: 10.1109/TMTT.2012.2206400

[7]

Zhong Yinghui, Su Yongbo, Jin Zhi. An InGaAs/InP W-band dynamic frequency divider[J]. Journal of Infrared and Millimeter Waves, 2012, 31(5): 393. doi: 10.3724/SP.J.1010.2012.00393

[8]

Wei H J, Meng C, Chang Y W. 9.5 GHz GaInP/GaAs HBT divide-by-two frequency divider using super-dynamic D-type flip-flop technique[J]. Electron Lett, 2007, 43(13): 1.

[9]

Shin H, Won B. A 4.5 to 9.2-GHz wideband semidynamic frequency divide-by-1.5 in GaInP/GaAs HBT[J]. IEEE Microw Wireless Compon Lett, 2007, 17(1): 73. doi: 10.1109/LMWC.2006.887280

[10]

Zhang Jincan, Zhang Yuming, Lu Hongliang. A novel model for implementation of gamma radiation effects in GaAs HBTs[J]. IEEE Trans Microw Theory Tech, 2012, 60(12): 3693. doi: 10.1109/TMTT.2012.2221137

[11]

Vuppala S, Li C S, Zwicknagl P. Neutron, proton, and electron irradiation effects in InGaP/GaAs single heterojunction bipolar transistors[J]. IEEE Trans Nucl Sci, 2003, 50(6): 1846. doi: 10.1109/TNS.2003.820765

[1]

Junming Lin, Guohao Zhang, Yaohua Zheng, Sizhen Li, Zhihao Zhang, Sidi Chen. Design of broadband class-F power amplifier with high-order harmonic suppression for S-band application. J. Semicond., 2015, 36(12): 125002. doi: 10.1088/1674-4926/36/12/125002

[2]

Yaohua Zheng, Guohao Zhang, Ruiqing Zheng, Sizhen Li, Junming Lin, Sidi Chen. Design of broadband class-F power amplifier for multiband LTE handsets applications. J. Semicond., 2015, 36(8): 085004. doi: 10.1088/1674-4926/36/8/085004

[3]

Bi Xiaojun, Zhang Haiying, Chen Liqiang, Huang Qinghua. A Monolithic InGaP/GaAs HBT PA for TD-SCDMA Handset Application. J. Semicond., 2008, 29(10): 1868.

[4]

Chen Yanhu, Shen Huajun, Wang Xiantai, Chen Gaopeng, Liu Xinyu, Yuan Dongfeng, Wang Zuqiang. An InGaP/GaAs HBT MIC Power Amplifier with Power Combining at the X-Band. J. Semicond., 2008, 29(11): 2098.

[5]

Chen Liqiang, Zhang Jian, Li Zhiqiang, Chen Pufeng, Zhang Haiying. A Monolithic InGaP/GaAs HBT VCO for 5GHz Wireless Applications. J. Semicond., 2007, 28(6): 823.

[6]

Guo Ting, Li Zhiqun, Li Qin, Wang Zhigong. A 7-27 GHz DSCL divide-by-2 frequency divider. J. Semicond., 2012, 33(10): 105006. doi: 10.1088/1674-4926/33/10/105006

[7]

Jie Cui, Lei Chen, Chunlei Kang, Jia Shi, Xuguang Zhang, Baoli Ai, Yi Liu. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802.11a/n. J. Semicond., 2013, 34(6): 065001. doi: 10.1088/1674-4926/34/6/065001

[8]

Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Bo Liu, Leiming Zhang, Fei Xiang. A Ku-band wide-tuning-range high-output-power VCO in InGaP/GaAs HBT technology. J. Semicond., 2015, 36(6): 065010. doi: 10.1088/1674-4926/36/6/065010

[9]

Zhiqun Cheng, Ming Zhang, Jiangzhou Li, Guohua Liu. A broadband high-efficiency Doherty power amplifier using symmetrical devices. J. Semicond., 2018, 39(4): 045004. doi: 10.1088/1674-4926/39/4/045004

[10]

Huang Qinghua, Hao Mingli, Wang Yuchen, Zhang Zongnan, Liu Xunchun. A UHF Balanced Broadband 20W Power Amplifier. J. Semicond., 2008, 29(2): 361.

[11]

Ding Ying, Wang Wei, Kan Qiang, Wang Baojun, Zhou Fan. A Broadband Long-Wavelength Superluminescent Diode Based on Graded Composition Bulk InGaAs. J. Semicond., 2005, 26(12): 2309.

[12]

Wenkai Zhu, Xia Wei, Faguang Yan, Quanshan Lv, Ce Hu, Kaiyou Wang. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J. Semicond., 2019, 40(9): 092001. doi: 10.1088/1674-4926/40/9/092001

[13]

Xi Wang, Bichan Zhang, Hua Zhao, Yongbo Su, Asif Muhammad, Dong Guo, Zhi Jin. A 75 GHz regenerative dynamic frequency divider with active transformer using InGaAs/InP HBT technology. J. Semicond., 2017, 38(8): 085001. doi: 10.1088/1674-4926/38/8/085001

[14]

Jie Jin, Jia Shi, Baoli Ai, Xuguang Zhang. A highly linear power amplifier for WLAN. J. Semicond., 2016, 37(2): 025006. doi: 10.1088/1674-4926/37/2/025006

[15]

Hongbo Lu, Jingman Shen, Xinyi Li, Wei Zhang, Dayong Zhou, Lijie Sun, Kaijian Chen. Te doped ultrabroad band tunnel junction. J. Semicond., 2014, 35(10): 103003. doi: 10.1088/1674-4926/35/10/103003

[16]

Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun, Kaijian Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells. J. Semicond., 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010

[17]

Ying Lu, Liang Shen, Jiabo Wang, Ya Shen. The design of miniaturized broadband power divider utilizing GaAs-based IPD process and equivalent circuit model. J. Semicond., 2017, 38(8): 085004. doi: 10.1088/1674-4926/38/8/085004

[18]

Dong Junrong, Huang Jie, Tian Chao, Yang Hao, Zhang Haiying. A broadband GaAs MMIC frequency doubler on left-handed nonlinear transmission lines. J. Semicond., 2011, 32(9): 095003. doi: 10.1088/1674-4926/32/9/095003

[19]

Wenyuan Li, Qian Zhang. A novel broadband power amplifier in SiGe HBT technology. J. Semicond., 2013, 34(1): 015001. doi: 10.1088/1674-4926/34/1/015001

[20]

Feifei Wang, Peng Jin, Ju Wu, Yanhua Wu, Fajie Hu, Zhanguo Wang. Active multi-mode-interferometer broadband superluminescent diodes. J. Semicond., 2016, 37(1): 014006. doi: 10.1088/1674-4926/37/1/014006

Search

Advanced Search >>

GET CITATION

J C Zhang, Y M Zhang, H Lü, Y M Zhang, M Liu, Y H Zhong, Z Shi. A broadband regenerative frequency divider in InGaP/GaAs HBT technology[J]. J. Semicond., 2014, 35(7): 075004. doi: 10.1088/1674-4926/35/7/075004.

Export: BibTex EndNote

Article Metrics

Article views: 1456 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 29 October 2013 Manuscript revised: 10 February 2014 Online: Published: 01 July 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误