J. Semicond. > Volume 35 > Issue 9 > Article Number: 093001

Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys

Wei Li 1, , , Peng Jin 1, , , Weiying Wang 1, , Defeng Mao 1, , Guipeng Liu 1, , Zhanguo Wang 1, , Jiaming Wang 2, , Fujun Xu 2, and Bo Shen 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: InAlN has been studied by means of temperature-dependent time-integrated photoluminescence and time-resolved photoluminescence. The variation of PL peak energy did not follow the behavior predicted by Varshni formula, and a faster redshift with increasing temperature was observed. We used a model that took account of the thermal activation and thermal transfer of localized excitons to describe and explain the observed behavior. A good fitting to the experiment result is obtained. We believe the anomalous temperature dependence of PL peak energy shift can be attributed to the temperature-dependent redistribution of localized excitons induced by thermal activation and thermal transfer in the strongly localized states. V-shaped defects are thought to be a major factor causing the strong localized states in our In0.153Al0.847N sample.

Key words: InAlNphotoluminescencethermal activationV-defects

Abstract: InAlN has been studied by means of temperature-dependent time-integrated photoluminescence and time-resolved photoluminescence. The variation of PL peak energy did not follow the behavior predicted by Varshni formula, and a faster redshift with increasing temperature was observed. We used a model that took account of the thermal activation and thermal transfer of localized excitons to describe and explain the observed behavior. A good fitting to the experiment result is obtained. We believe the anomalous temperature dependence of PL peak energy shift can be attributed to the temperature-dependent redistribution of localized excitons induced by thermal activation and thermal transfer in the strongly localized states. V-shaped defects are thought to be a major factor causing the strong localized states in our In0.153Al0.847N sample.

Key words: InAlNphotoluminescencethermal activationV-defects



References:

[1]

Choi S, Kim H J, Kim S S. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAlN electron-blocking layer[J]. Appl Phys Lett, 2010, 96: 221105. doi: 10.1063/1.3441373

[2]

Chen Z T, Sakai Y, Zhang J C. Effect of strain on quantum efficiency of InAlN-based solar-blind photodiodes[J]. Appl Phys Lett, 2009, 95: 083504. doi: 10.1063/1.3213562

[3]

Ganguly S, Konar A, Hu Z Y. Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors[J]. Appl Phys Lett, 2012, 101: 253519. doi: 10.1063/1.4773244

[4]

Berger C, Dadgar A, Bläsing J. Growth of AlInN/AlGaN distributed Bragg reflectors for high quality microcavities[J]. Phys Status Solidi C, 2012, 9: 1253. doi: 10.1002/pssc.v9.5

[5]

Deĭbuk V G, Voznyĭ A V. Thermodynamic stability and redistribution of charges in ternary AlGaN, InGaN, and InAlN Alloys[J]. Semiconductors, 2005, 39: 623. doi: 10.1134/1.1944849

[6]

Ferhat M, Bechstedt F. First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys:relation to structural and thermodynamic properties[J]. Phys Rev B, 2002, 65: 075213. doi: 10.1103/PhysRevB.65.075213

[7]

Jones R E, Broesler R, Yu K M. Band gap bowing parameter of In1-xAlxN[J]. J Appl Phys, 2008, 104: 123501. doi: 10.1063/1.3039509

[8]

Wang K, Martin R W, Amabile D. Optical energies of AlInN epilayers[J]. J Appl Phys, 2008, 103: 073510. doi: 10.1063/1.2898533

[9]

Iliopoulos E, Adikimenakis A, Giesen C. Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry[J]. Appl Phys Lett, 2008, 92: 191907. doi: 10.1063/1.2921783

[10]

Eliseev P G, Perlin P, Lee J. "Blue" temperature-induced shift and band-tail emission in InGaN-based light sources[J]. Appl Phys Lett, 1997, 71: 569. doi: 10.1063/1.119797

[11]

Cho Y H, Gainer G H, Lam J B. Dynamics of anomalous optical transitions in AlxGa1-xN alloys[J]. Phys Rev B, 2000, 61: 7203. doi: 10.1103/PhysRevB.61.7203

[12]

Li Q, Xu S J, Cheng W C. Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys[J]. Appl Phys Lett, 2001, 79: 1810. doi: 10.1063/1.1403655

[13]

Kamimura J, Kishino K, Kikuchi A. Low-temperature photoluminescence studies of In-rich InAlN nanocolumns[J]. Phys Status Solidi RRL, 2012, 6(3): 123. doi: 10.1002/pssr.v6.3

[14]

Miao Z L, Yu T J, Xu F J. Strain effects on InxAl1-xN crystalline quality grown on GaN templates by metalorganic chemical vapor deposition[J]. J Appl Phys, 2010, 107: 043515. doi: 10.1063/1.3305397

[15]

Bacher G, Hartmann C, Schweizer H. Exciton dynamics in InxGa1-xAs/GaAs quantum-well heterostructures:competition between capture and thermal emission[J]. Phys Rev B, 1993, 47: 9545. doi: 10.1103/PhysRevB.47.9545

[16]

Varshni Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34: 149. doi: 10.1016/0031-8914(67)90062-6

[17]

Jiang L F, Shen W Z, Guo Q X. Temperature dependence of the optical properties of AlInN[J]. J Appl Phys, 2009, 106: 013515. doi: 10.1063/1.3160299

[18]

Xu Z Y, Lu Z D, Yuan Z L. Thermal activation and thermal transfer of localized excitons in InAs self-organized quantum dots[J]. Superlattices Microstruct, 1998, 23: 381.

[19]

Onuma T, Chichibu S F, Uchinuma Y. Recombination dynamics of localized excitons in Al1-xInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy[J]. J Appl Phys, 2003, 94: 2449. doi: 10.1063/1.1592868

[20]

Onuma T, Chichibu S F, Uedono A. Radiative and nonradiative processes in strain-free AlxGa1-xN films studied by time-resolved photoluminescence and positron annihilation techniques[J]. J Appl Phys, 2004, 95: 2495. doi: 10.1063/1.1644041

[21]

Gotoh H, Ando H, Takagahara T. Effects of dimensionality on radiative recombination lifetime of excitons in thin quantum boxes of intermediate regime between zero and two dimensions[J]. Jpn J Appl Phys, 1997, 36: 4204. doi: 10.1143/JJAP.36.4204

[22]

Wei Q Y, Li T, Huang Y. Compositional instability in InAlN/GaN lattice-matched epitaxy[J]. Appl Phys Lett, 2012, 100: 092101. doi: 10.1063/1.3690890

[23]

Kehagias Th, Dimitrakopulos G P, Kioseoglou J. Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy[J]. Appl Phys Lett, 2009, 95: 071905. doi: 10.1063/1.3204454

[24]

Minj A, Cavalcoli D, Cavallini A. Indium segregation in AlInN/AlN/GaN heterostructures[J]. Appl Phys Lett, 2010, 97: 132114. doi: 10.1063/1.3489433

[25]

Miao Z L, Yu T J, Xu F J. The origin and evolution of V-defects in InxAl1-xN epilayers grown by metalorganic chemical vapor deposition[J]. Appl Phys Lett, 2009, 95: 231909. doi: 10.1063/1.3272017

[26]

Song J, Xu F J, Yan X D. High conductive gate leakage current channels induced by In segregation around screw-and mixed-type threading dislocations in lattice-matched InxAl1-xN/GaN heterostructures[J]. Appl Phys Lett, 2010, 97: 232106. doi: 10.1063/1.3525713

[27]

Wu X H, Elsass C R, Abare A. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells[J]. Appl Phys Lett, 1998, 72: 692. doi: 10.1063/1.120844

[1]

Choi S, Kim H J, Kim S S. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAlN electron-blocking layer[J]. Appl Phys Lett, 2010, 96: 221105. doi: 10.1063/1.3441373

[2]

Chen Z T, Sakai Y, Zhang J C. Effect of strain on quantum efficiency of InAlN-based solar-blind photodiodes[J]. Appl Phys Lett, 2009, 95: 083504. doi: 10.1063/1.3213562

[3]

Ganguly S, Konar A, Hu Z Y. Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors[J]. Appl Phys Lett, 2012, 101: 253519. doi: 10.1063/1.4773244

[4]

Berger C, Dadgar A, Bläsing J. Growth of AlInN/AlGaN distributed Bragg reflectors for high quality microcavities[J]. Phys Status Solidi C, 2012, 9: 1253. doi: 10.1002/pssc.v9.5

[5]

Deĭbuk V G, Voznyĭ A V. Thermodynamic stability and redistribution of charges in ternary AlGaN, InGaN, and InAlN Alloys[J]. Semiconductors, 2005, 39: 623. doi: 10.1134/1.1944849

[6]

Ferhat M, Bechstedt F. First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys:relation to structural and thermodynamic properties[J]. Phys Rev B, 2002, 65: 075213. doi: 10.1103/PhysRevB.65.075213

[7]

Jones R E, Broesler R, Yu K M. Band gap bowing parameter of In1-xAlxN[J]. J Appl Phys, 2008, 104: 123501. doi: 10.1063/1.3039509

[8]

Wang K, Martin R W, Amabile D. Optical energies of AlInN epilayers[J]. J Appl Phys, 2008, 103: 073510. doi: 10.1063/1.2898533

[9]

Iliopoulos E, Adikimenakis A, Giesen C. Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry[J]. Appl Phys Lett, 2008, 92: 191907. doi: 10.1063/1.2921783

[10]

Eliseev P G, Perlin P, Lee J. "Blue" temperature-induced shift and band-tail emission in InGaN-based light sources[J]. Appl Phys Lett, 1997, 71: 569. doi: 10.1063/1.119797

[11]

Cho Y H, Gainer G H, Lam J B. Dynamics of anomalous optical transitions in AlxGa1-xN alloys[J]. Phys Rev B, 2000, 61: 7203. doi: 10.1103/PhysRevB.61.7203

[12]

Li Q, Xu S J, Cheng W C. Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys[J]. Appl Phys Lett, 2001, 79: 1810. doi: 10.1063/1.1403655

[13]

Kamimura J, Kishino K, Kikuchi A. Low-temperature photoluminescence studies of In-rich InAlN nanocolumns[J]. Phys Status Solidi RRL, 2012, 6(3): 123. doi: 10.1002/pssr.v6.3

[14]

Miao Z L, Yu T J, Xu F J. Strain effects on InxAl1-xN crystalline quality grown on GaN templates by metalorganic chemical vapor deposition[J]. J Appl Phys, 2010, 107: 043515. doi: 10.1063/1.3305397

[15]

Bacher G, Hartmann C, Schweizer H. Exciton dynamics in InxGa1-xAs/GaAs quantum-well heterostructures:competition between capture and thermal emission[J]. Phys Rev B, 1993, 47: 9545. doi: 10.1103/PhysRevB.47.9545

[16]

Varshni Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34: 149. doi: 10.1016/0031-8914(67)90062-6

[17]

Jiang L F, Shen W Z, Guo Q X. Temperature dependence of the optical properties of AlInN[J]. J Appl Phys, 2009, 106: 013515. doi: 10.1063/1.3160299

[18]

Xu Z Y, Lu Z D, Yuan Z L. Thermal activation and thermal transfer of localized excitons in InAs self-organized quantum dots[J]. Superlattices Microstruct, 1998, 23: 381.

[19]

Onuma T, Chichibu S F, Uchinuma Y. Recombination dynamics of localized excitons in Al1-xInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy[J]. J Appl Phys, 2003, 94: 2449. doi: 10.1063/1.1592868

[20]

Onuma T, Chichibu S F, Uedono A. Radiative and nonradiative processes in strain-free AlxGa1-xN films studied by time-resolved photoluminescence and positron annihilation techniques[J]. J Appl Phys, 2004, 95: 2495. doi: 10.1063/1.1644041

[21]

Gotoh H, Ando H, Takagahara T. Effects of dimensionality on radiative recombination lifetime of excitons in thin quantum boxes of intermediate regime between zero and two dimensions[J]. Jpn J Appl Phys, 1997, 36: 4204. doi: 10.1143/JJAP.36.4204

[22]

Wei Q Y, Li T, Huang Y. Compositional instability in InAlN/GaN lattice-matched epitaxy[J]. Appl Phys Lett, 2012, 100: 092101. doi: 10.1063/1.3690890

[23]

Kehagias Th, Dimitrakopulos G P, Kioseoglou J. Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy[J]. Appl Phys Lett, 2009, 95: 071905. doi: 10.1063/1.3204454

[24]

Minj A, Cavalcoli D, Cavallini A. Indium segregation in AlInN/AlN/GaN heterostructures[J]. Appl Phys Lett, 2010, 97: 132114. doi: 10.1063/1.3489433

[25]

Miao Z L, Yu T J, Xu F J. The origin and evolution of V-defects in InxAl1-xN epilayers grown by metalorganic chemical vapor deposition[J]. Appl Phys Lett, 2009, 95: 231909. doi: 10.1063/1.3272017

[26]

Song J, Xu F J, Yan X D. High conductive gate leakage current channels induced by In segregation around screw-and mixed-type threading dislocations in lattice-matched InxAl1-xN/GaN heterostructures[J]. Appl Phys Lett, 2010, 97: 232106. doi: 10.1063/1.3525713

[27]

Wu X H, Elsass C R, Abare A. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells[J]. Appl Phys Lett, 1998, 72: 692. doi: 10.1063/1.120844

[1]

Yun Lijun, Wei Tongbo, Yan Jianchang, Liu Zhe, Wang Junxi, Li Jinmin. MOCVD epitaxy of InAlN on different templates. J. Semicond., 2011, 32(9): 093001. doi: 10.1088/1674-4926/32/9/093001

[2]

Bo Liu, Jiayun Yin, Yuanjie Lü, Shaobo Dun, Xiongwen Zhang, Zhihong Feng, Shujun Cai. Unstrained InAlN/GaN heterostructures grown on sapphire substrates by MOCVD. J. Semicond., 2014, 35(11): 113005. doi: 10.1088/1674-4926/35/11/113005

[3]

Chunlei Ma, Guodong Gu, Yuanjie Lü. A high performance InAlN/GaN HEMT with low Ron and gate leakage. J. Semicond., 2016, 37(2): 024009. doi: 10.1088/1674-4926/37/2/024009

[4]

Bo Liu, Zhihong Feng, Shaobo Dun, Xiongwen Zhang, Guodong Gu, Yuangang Wang, Peng Xu, Zezhao He, Shujun Cai. An extrinsic fmax > 100 GHz InAlN/GaN HEMT with AlGaN back barrier. J. Semicond., 2013, 34(4): 044006. doi: 10.1088/1674-4926/34/4/044006

[5]

Zheng Weimin, Li Sumei, Lü Yingbo, Wang Aifang, Wu Ailing. Photoluminescence of the Beryllium Acceptor at the Centre of Quantum Wells. J. Semicond., 2008, 29(11): 2115.

[6]

Jiang Ran, Xie Erqing, Jia Changwen, Lin Hongfeng, Pan Xiaojun, Li Hui. Photoluminescence Characterization of HfON∶Tb Films with Sputtering. J. Semicond., 2006, 27(S1): 169.

[7]

Binglei Fu, Naixin Liu, Zhe Liu, Jinmin Li, Junxi Wang. Advantages of InGaN/GaN light emitting diodes with p-GaN grown under high pressure. J. Semicond., 2014, 35(11): 114007. doi: 10.1088/1674-4926/35/11/114007

[8]

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, Hu Xiaodong, Zhang Guoyi. Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs. J. Semicond., 2006, 27(S1): 20.

[9]

Wang Bing, Xu Ping, Yang Guowei. Low-Temperature Growth and Photoluminescence of SnO2 Nanowires. J. Semicond., 2008, 29(8): 1469.

[10]

Z. Mouffak, A. Bensaoula, L. Trombetta. A photoluminescence study of plasma reactive ion etching-induced damage in GaN. J. Semicond., 2014, 35(11): 113003. doi: 10.1088/1674-4926/35/11/113003

[11]

Guo Hengqun, Lin Shangxin, Wang Qiming. Photoluminescence and Application of Nonlinear Optical Property of nc-Si-SiO2 Films. J. Semicond., 2006, 27(2): 345.

[12]

Tan P H, Luo X D, Ge W K, Xu Z Y, Zhang Y, Mascarenhas A, Xin H P, Tu C W. Resonant Raman Scattering and Photoluminescence Emissions from Above Bandgap Levels in Dilute GaAsN Alloys. J. Semicond., 2006, 27(3): 397.

[13]

Liang Zhimei, Wu Ju, Jin Peng, Lü Xueqin, Wang Zhanguo. The Origin of Multi-Peak Structures Observed in Photoluminescence Spectra of InAs/GaAs Quantum Dots. J. Semicond., 2008, 29(11): 2121.

[14]

Ma Zhongyuan, Han Peigao, Li Wei, Chen San, Qian Bo, Xu Jun, Xu Ling, Huang Xinfan, Chen Kunji, Feng Duan. Photoluminescence During the Crystallization of a-Si∶H/SiO2 Multilayers. J. Semicond., 2006, 27(S1): 76.

[15]

Zhang Linli, Guo Changxin. Synthesis and Photoluminescence Properties of Dy-Doped ZnO Nanocrystals. J. Semicond., 2007, 28(6): 887.

[16]

Chen San, Qian Bo, Chen Kunji, Cen Zhanhong, Liu Yansong, Han Peigao, Ma Zhongyuan, Xu Jun, Li Wei, Huang Xinfan. Photoluminescence of nc-Si/SiN Superlattices Embeddedin Optical Microcavities. J. Semicond., 2006, 27(S1): 25.

[17]

Xia Yan, Wang Junzhuan, Shi Zhuoqiong, Shi Yi, Pu Lin, Zhang Rong, Zheng Youdou, Tao Zhensheng, Lu Fang. Photoluminescence Properties of Er-Doped HfO2 Films. J. Semicond., 2007, 28(9): 1388.

[18]

Ding Wuchang, Zuo Yuhua, Zhang Yun, Guo Jianchuan, Cheng Buwen, Yu Jinzhong, Wang Qiming, Guo Hengqun, Lü Peng, Shen Jiwei. Photoluminescence spectroscopy of sputtering Er-doped silicon-rich silicon nitride films. J. Semicond., 2009, 30(10): 102001. doi: 10.1088/1674-4926/30/10/102001

[19]

Bi Yang, Wang Xiaoliang, Xiao Hongling, Wang Cuimei, Yang Cuibai, Peng Enchao, Lin Defeng, Feng Chun, Jiang Lijuan. Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure. J. Semicond., 2011, 32(8): 083003. doi: 10.1088/1674-4926/32/8/083003

[20]

Priyal Jain, P. Arun. Parameters influencing the optical properties of SnS thin films. J. Semicond., 2013, 34(9): 093004. doi: 10.1088/1674-4926/34/9/093004

Search

Advanced Search >>

GET CITATION

W Li, P Jin, W Y Wang, D F Mao, G P Liu, Z G Wang, J M Wang, F J Xu, B Shen. Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys[J]. J. Semicond., 2014, 35(9): 093001. doi: 10.1088/1674-4926/35/9/093001.

Export: BibTex EndNote

Article Metrics

Article views: 604 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 12 March 2014 Manuscript revised: 18 March 2014 Online: Published: 01 September 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误