J. Semicond. > Volume 35 > Issue 9 > Article Number: 093003

Significant improvement of ZnS film electrical and optical performance by indium incorporation

Jinhuo Chen , and Wenjian Li

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper reports a new material, indium-doped ZnS (ZnS:In) film, which is fabricated for the first time to improve its electrical and optical performance. By electron beam evaporation technology and the optimized annealing treatment, high quality ZnS:In film is prepared. XRD indicates that the incorporation of 6 at.% indium atoms into ZnS film causes little lattice deformation. The AFM results imply that large sized particles are compactly dispersed in the ZnS:In layer and results in an unsmooth surface. Electrical and optical property tests show that the resistivity of ZnS film is greatly decreased to 4.46×10-2 Ω·cm and the optical transmittance is improved to 85% in the visible region. Comparing with the results in other literatures, significant progress in electrical/optical performance has been made in this paper.

Key words: ZnSindium incorporationthin filmsemiconductors

Abstract: This paper reports a new material, indium-doped ZnS (ZnS:In) film, which is fabricated for the first time to improve its electrical and optical performance. By electron beam evaporation technology and the optimized annealing treatment, high quality ZnS:In film is prepared. XRD indicates that the incorporation of 6 at.% indium atoms into ZnS film causes little lattice deformation. The AFM results imply that large sized particles are compactly dispersed in the ZnS:In layer and results in an unsmooth surface. Electrical and optical property tests show that the resistivity of ZnS film is greatly decreased to 4.46×10-2 Ω·cm and the optical transmittance is improved to 85% in the visible region. Comparing with the results in other literatures, significant progress in electrical/optical performance has been made in this paper.

Key words: ZnSindium incorporationthin filmsemiconductors



References:

[1]

Kasap S, Capper P. Springer handbook of electronic and photonic materials. Berlin:Springer, 2006

[2]

Hariskos D, Spiering S, Powalla M. Buffer layers in Cu(In, Ga)Se2 solar cells and modules[J]. Thin Solid Films, 2005, 480/481: 99.

[3]

Kreger F. The chemistry of imperfect crystals. Amsterdam:North-Holland, 1964

[4]

Contreras M A, Nakada T, Hongo M. ZnO/ZnS(O, OH)/Cu(In, Ga)Se2/Mo solar cell with 18.6% efficiency[J]. Proceedings of 3rd World Conference on of Photovoltaic Energy Conversion, Osaka, Japan, 2003, 1: 570.

[5]

Nagamani , Revathi N, Prathapc P. Al-doped ZnS layers synthesized by solution growth method[J]. Curr Aool Phys, 2012, 12: 380. doi: 10.1016/j.cap.2011.07.031

[6]

Lott K, Nirk T, Shinkarenko S. High temperature electrical conductivity in ZnS:Al and in CdSe:Al[J]. Solid State Ionics, 2004, 173: 83. doi: 10.1016/j.ssi.2004.07.056

[7]

Prathap P, Revath N, Subbaiah Y P V. Preparation and characterization of transparent conducting ZnS:Al films[J]. Solid State Sci, 2009, 11: 224. doi: 10.1016/j.solidstatesciences.2008.04.020

[8]

Brus V V, Kovalyuk Z D, Maryanchuk P D. Optical properties of TiO-MnO thin films prepared by electron-beam evaporation[J]. Tech Phys, 2012, 57: 1148. doi: 10.1134/S1063784212080063

[9]

Cullity B D, Stock S R. Elements of X-ray diffraction. 3rd ed. New Jersey:Prentice Hall, 2001

[10]

Zhang R, Wang B, Wei L. Sulfidation growth and characterization of nanocrystalline ZnS thin films[J]. Vacuum, 2008, 82: 1208. doi: 10.1016/j.vacuum.2008.02.003

[1]

Kasap S, Capper P. Springer handbook of electronic and photonic materials. Berlin:Springer, 2006

[2]

Hariskos D, Spiering S, Powalla M. Buffer layers in Cu(In, Ga)Se2 solar cells and modules[J]. Thin Solid Films, 2005, 480/481: 99.

[3]

Kreger F. The chemistry of imperfect crystals. Amsterdam:North-Holland, 1964

[4]

Contreras M A, Nakada T, Hongo M. ZnO/ZnS(O, OH)/Cu(In, Ga)Se2/Mo solar cell with 18.6% efficiency[J]. Proceedings of 3rd World Conference on of Photovoltaic Energy Conversion, Osaka, Japan, 2003, 1: 570.

[5]

Nagamani , Revathi N, Prathapc P. Al-doped ZnS layers synthesized by solution growth method[J]. Curr Aool Phys, 2012, 12: 380. doi: 10.1016/j.cap.2011.07.031

[6]

Lott K, Nirk T, Shinkarenko S. High temperature electrical conductivity in ZnS:Al and in CdSe:Al[J]. Solid State Ionics, 2004, 173: 83. doi: 10.1016/j.ssi.2004.07.056

[7]

Prathap P, Revath N, Subbaiah Y P V. Preparation and characterization of transparent conducting ZnS:Al films[J]. Solid State Sci, 2009, 11: 224. doi: 10.1016/j.solidstatesciences.2008.04.020

[8]

Brus V V, Kovalyuk Z D, Maryanchuk P D. Optical properties of TiO-MnO thin films prepared by electron-beam evaporation[J]. Tech Phys, 2012, 57: 1148. doi: 10.1134/S1063784212080063

[9]

Cullity B D, Stock S R. Elements of X-ray diffraction. 3rd ed. New Jersey:Prentice Hall, 2001

[10]

Zhang R, Wang B, Wei L. Sulfidation growth and characterization of nanocrystalline ZnS thin films[J]. Vacuum, 2008, 82: 1208. doi: 10.1016/j.vacuum.2008.02.003

[1]

K. Benyahia, A. Benhaya, M. S. Aida. ZnS thin films deposition by thermal evaporation for photovoltaic applications. J. Semicond., 2015, 36(10): 103001. doi: 10.1088/1674-4926/36/10/103001

[2]

M. R. Fadavieslam, M. M. Bagheri-Mohagheghi. Spray pyrolysis of tin selenide thin-film semiconductors:the effect of selenium concentration on the properties of the thin films. J. Semicond., 2013, 34(8): 082001. doi: 10.1088/1674-4926/34/8/082001

[3]

M. Benhaliliba, C.E. Benouis, M.S. Aida, A. Ayeshamariam. Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications. J. Semicond., 2017, 38(6): 064004. doi: 10.1088/1674-4926/38/6/064004

[4]

Xinliang Chen, Jieming Liu, Jia Fang, Ze Chen, Ying Zhao, Xiaodan Zhang. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells. J. Semicond., 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003

[5]

Wenjian Li, Jinhuo Chen, Shuying Cheng, Yongshun Wang. Substrate temperature effects on the structural and photoelectric properties of ZnS:In films. J. Semicond., 2014, 35(2): 023001. doi: 10.1088/1674-4926/35/2/023001

[6]

K. Mahmood, M. Asghar, N. Amin, Adnan Ali. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing. J. Semicond., 2015, 36(3): 033001. doi: 10.1088/1674-4926/36/3/033001

[7]

M. Mehrabian, Z. Esteki, H. Shokrvash, G. Kavei. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers. J. Semicond., 2016, 37(10): 103002. doi: 10.1088/1674-4926/37/10/103002

[8]

Lu Feiping, Peng Yingquan, Song Chang'an, Xing Hongwei, Li Xunshuan, Yang Qingsen. Preparation and Optical Properties of 8-Hydroxylquinline Cadmium Thin Film. J. Semicond., 2007, 28(7): 1063.

[9]

Lily Liu, Changbin Song, Bin Xue, Jing Li, Junxi Wang, Jinmin Li. Exploration of photosensitive polyimide as the modification layer in thin film microcircuit. J. Semicond., 2018, 39(2): 026001. doi: 10.1088/1674-4926/39/2/026001

[10]

T. Bentrcia, F. Djeffal, E. Chebaaki. ANFIS-based approach to studying subthreshold behavior including the traps effect for nanoscale thin-film DG MOSFETs. J. Semicond., 2013, 34(8): 084001. doi: 10.1088/1674-4926/34/8/084001

[11]

Achour Rahal, Said Benramache, Boubaker Benhaoua. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method. J. Semicond., 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003

[12]

Zhao Miao, Zhou Daibing, Tan Manqing, Wang Xiaodong, Wu Xuming. Preparation of Si/SiO2 Optical Thin Film by Double Source Electron Beam Evaporation Technology. J. Semicond., 2006, 27(9): 1586.

[13]

Balasaheb M. Palve, Sandesh R. Jadkar, Habib M. Pathan. A simple chemical route to synthesize the umangite phase of copper selenide (Cu3Se2) thin film at room temperature. J. Semicond., 2017, 38(6): 063003. doi: 10.1088/1674-4926/38/6/063003

[14]

Kh. S. Karimov, M. Mahroof-Tahir, M. Saleem, N. Ahmad, A. Rashid. Optical transmission in thin films of vanadium compounds. J. Semicond., 2014, 35(7): 072002. doi: 10.1088/1674-4926/35/7/072002

[15]

Dandan Wang, Qingpu Wang, Hanbin Wang, Xijian Zhang, Liwei Wu, Fujie Li, Shuai Yuan. Characteristics of sputtered Y-doped IZO thin films and devices. J. Semicond., 2015, 36(9): 093004. doi: 10.1088/1674-4926/36/9/093004

[16]

Wang Gang, Li Wei, Li Ping, Li Zuxiong, Fan Xue, Jiang Jing. A novel antifuse structure based on amorphous bismuth zinc niobate thin films. J. Semicond., 2012, 33(8): 084002. doi: 10.1088/1674-4926/33/8/084002

[17]

Achour Rahal, Said Benramache, Boubaker Benhaoua. Preparation of n-type semiconductor SnO2 thin films. J. Semicond., 2013, 34(8): 083002. doi: 10.1088/1674-4926/34/8/083002

[18]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

[19]

M. R. Fadavieslam, N. Shahtahmasebi, M. Rezaee-Roknabadi, M. M. Bagheri-Mohagheghi. Effect of deposition conditions on the physical properties of SnxSy thin films prepared by the spray pyrolysis technique. J. Semicond., 2011, 32(11): 113002. doi: 10.1088/1674-4926/32/11/113002

[20]

Said Benramache, Foued Chabane, Boubaker Benhaoua, Fatima Z. Lemmadi. Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films. J. Semicond., 2013, 34(2): 023001. doi: 10.1088/1674-4926/34/2/023001

Search

Advanced Search >>

GET CITATION

J H Chen, W J Li. Significant improvement of ZnS film electrical and optical performance by indium incorporation[J]. J. Semicond., 2014, 35(9): 093003. doi: 10.1088/1674-4926/35/9/093003.

Export: BibTex EndNote

Article Metrics

Article views: 512 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 02 March 2014 Manuscript revised: 20 April 2014 Online: Published: 01 September 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误