J. Semicond. > Volume 35 > Issue 9 > Article Number: 095001

Performance analysis of a complete adiabatic logic system driven by the proposed power clock generator

Jitendra Kanungo 1, , and S. Dasgupta 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: We analyze the energy performance of a complete adiabatic circuit/system including the Power Clock Generator (PCG) at the 90 nm CMOS technology node. The energy performance in terms of the conversion efficiency of the PCG is extensively carried out under the variations of supply voltage, process corner and the driver transistor's width. We propose an energy-efficient singe cycle control circuit based on the two-stage comparator for the synchronous charge recovery sinusoidal power clock generator (PCG). The proposed PCG is used to drive the 4-bit adiabatic Ripple Carry Adder (RCA) and their simulation results are compared with the adiabatic RCA driven by the reported PCG. We have also simulated the logically equivalent static CMOS RCA circuit to compare the energy saving of adiabatic and non-adiabatic logic circuits. In the clock frequency range from 25 MHz to 1GHz, the proposed PCG gives a maximum conversion efficiency of 56.48%. This research work shows how the design of an efficient PCG increases the energy saving of adiabatic logic.

Key words: clock-generatorenergy recovery logiclow powersingle phase sinusoidal clock

Abstract: We analyze the energy performance of a complete adiabatic circuit/system including the Power Clock Generator (PCG) at the 90 nm CMOS technology node. The energy performance in terms of the conversion efficiency of the PCG is extensively carried out under the variations of supply voltage, process corner and the driver transistor's width. We propose an energy-efficient singe cycle control circuit based on the two-stage comparator for the synchronous charge recovery sinusoidal power clock generator (PCG). The proposed PCG is used to drive the 4-bit adiabatic Ripple Carry Adder (RCA) and their simulation results are compared with the adiabatic RCA driven by the reported PCG. We have also simulated the logically equivalent static CMOS RCA circuit to compare the energy saving of adiabatic and non-adiabatic logic circuits. In the clock frequency range from 25 MHz to 1GHz, the proposed PCG gives a maximum conversion efficiency of 56.48%. This research work shows how the design of an efficient PCG increases the energy saving of adiabatic logic.

Key words: clock-generatorenergy recovery logiclow powersingle phase sinusoidal clock



References:

[1]

Dikinson A G, Denkar J S. Adiabatic dynamic logic[J]. IEEE J Solid-State Circuits, 1995, 30(3): 311. doi: 10.1109/4.364447

[2]

Mahmoodi-Meimand H, Afzali-Kusha A. Efficient power clock generation for adiabatic logic[J]. Proc IEEE Int Symposium on Circuits and Systems (ISCAS), 2001, 4: 642.

[3]

Athas W C, Svensson L J, Tzartzanis N. A resonant signal driver for two-phase, almost-non-overlapping clocks[J]. Proceedings of the International Symposium on Circuits and Systems, 1996: 12.

[4]

Maksimovic D, Oklobdzija V G. Integrated power clock generators for low energy logic[J]. Proceedings of IEEE Power Electronics Specialists Conference, 1995: 61.

[5]

Nayan A N, Takahashi Y, Sekine T. LSI implementation of a low-power 4×4-bit array two-phase clocked adiabatic static CMOS logic multiplier[J]. Microelectron J, 2012, 43(4): 244. doi: 10.1016/j.mejo.2011.12.013

[6]

Moon Y, Jeong D K. A 32×32-b adiabatic register file with supply clock generator[J]. IEEE J Solid-State Circuits, 1998, 33(5): 696. doi: 10.1109/4.668983

[7]

Arsalan M, Shams M. Charge-recovery power clock generators for adiabatic logic circuits[J]. Proc 18th International Conference on VLSI Design, 2005: 171.

[8]

Maksimovic D, Oklobdzija V G, Nikolic B. Clocked CMOS adiabatic logic with integrated single-phase power-clock supply[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 2000, 8(4): 460. doi: 10.1109/92.863629

[9]

Marjonen J, Aberg M. A single phase clocked adiabatic static logic-a proposal for digital low power applications[J]. Kluwer Academic Pub J of VLSI Signal Processing, 2001, 27: 253. doi: 10.1023/A:1008143316204

[10]

Maksimovic D, Oklobdzija V G. Integrated power clock generators for low energy logic[J]. Proc 26th IEEE Annual Conf on Power Electronics Specialists (PESC), 1995, 1: 61. doi: 10.1109/PESC.1995.474793

[11]

Bargagli-Stoffi , Iannaccone G, Pascoli S D. Four-phase power clock generator for adiabatic logic circuits[J]. IEE Electron Lett, 2002, 38(14): 689. doi: 10.1049/el:20020523

[12]

Ziesier C H, Kim S, Papaefthymiou M C. A resonant clock generator for single-phase adiabatic systems[J]. Proc IEEE Int Symposium on Low Power Electronics and Design, 2001: 159.

[13]

Svensson L J, Koller J G. Driving a capacitive load without dissipating fCV2[J]. Proc IEEE Symposium on Low Power Electronics, Digest of Technical Papers, 1994: 100.

[14]

Teichmann P. Adiabatic logic:future trend and system level perspective-first edition[J]. Springer Series in Advanced Microelectronics, 2012.

[15]

Fisher J, Teichmann P, Landsiedel M D S. Scaling trends in adiabatic logic[J]. Proc ACM 2nd Conference on Computing Frontiers, 2005: 427.

[16]

Kanungo J, Dasgupta S. Scaling trends in energy recovery logic:an analytical approach[J]. Journal of Semiconductors, 2013, 34(8): 085001. doi: 10.1088/1674-4926/34/8/085001

[17]

Sathe V S, Chueh J Y, Papaefthyymiou M C. Energy-efficient GHz-class charge-recovery logic[J]. IEEE J Solid-State Circuits, 2007, 42(1): 38. doi: 10.1109/JSSC.2006.885053

[18]

Ziesler C H, Joohee K, Sathe V S. A 225 MHz resonant clocked ASIC chip[J]. Proc Int Symposium on Low Power Electronics and Design, 2003: 48.

[19]

Ziesler C H, Joohee K, Papaefthymiou M C. Energy recovering ASIC design[J]. Proc IEEE Computer Society Annual Symposium on VLSI, 2003: 133.

[20]

Kim S, Ziesler C H, Papaefthyymiou M C. A true-single phase energy-recovery multiplier[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 2003, 11(2): 194. doi: 10.1109/TVLSI.2003.810795

[21]

Masksimovic D, Oklobdzija V G, Nikolic B. Clocked CMOS adiabatic logic with integrated single-phase power-clock supply[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 2000, 8(4): 460. doi: 10.1109/92.863629

[22]

Baker R J. CMOS circuit design, layout, and simulation. 3rd ed. IEEE Series on Microelectronics Systems, Wiley, 2010

[23]

Nikolic B, Stojanovic V, Oklobdzija V G. Sense amplifier-based flip-flop[J]. Proc IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 1999: 283.

[24]

Wicht B, Nirschl T, Schmitt-Landsiedel D. Yield and speed optimization of a latch-type voltage sense amplifier[J]. IEEE J Solid-State Circuits, 2004, 39(7): 1148. doi: 10.1109/JSSC.2004.829399

[25]

Goll B, Zimmermann H. A comparator with reduced delay time in 65-nm CMOS for supply voltages down to 0.65 V[J]. IEEE Trans Circuits Syst Ⅱ:Express Briefs, 2009, 56(11): 810. doi: 10.1109/TCSII.2009.2030357

[26]

Athas W C, Svensson L J, Koller J G. Low-power digital systems based on adiabatic-switching principles[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 1994, 2(4): 398. doi: 10.1109/92.335009

[27]

Rabaey J M, Chandrakasan A, Nikolic B. Digital integrated circuits: a design perspective. 2nd ed. Prentice Hall Electronics and VLSI Series, Pearson Education, Singapore: Pte Ltd, 2003

[28]

Montanaro J, Witek R T, Anne K. A 160 MHz 32-b 0.5-W CMOS RISC microprocessor[J]. IEEE J Solid-State Circuits, 1996, 31(11): 1703. doi: 10.1109/JSSC.1996.542315

[29]

Mahmoodi H, Tirumalashetty V, Cooke M. Ultra low-power clocking scheme using energy recovery and clock gating[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 2009, 17(1): 33. doi: 10.1109/TVLSI.2008.2008453

[30]

Mahmoodi-Meinnand H, Afzali-Kusha A, Nourani M. Adiabatic carry look-ahead adder with efficient power clock generator[J]. IEE Proceedings Circuits, Devices and Systems, 2001, 148(5): 229. doi: 10.1049/ip-cds:20010439

[1]

Dikinson A G, Denkar J S. Adiabatic dynamic logic[J]. IEEE J Solid-State Circuits, 1995, 30(3): 311. doi: 10.1109/4.364447

[2]

Mahmoodi-Meimand H, Afzali-Kusha A. Efficient power clock generation for adiabatic logic[J]. Proc IEEE Int Symposium on Circuits and Systems (ISCAS), 2001, 4: 642.

[3]

Athas W C, Svensson L J, Tzartzanis N. A resonant signal driver for two-phase, almost-non-overlapping clocks[J]. Proceedings of the International Symposium on Circuits and Systems, 1996: 12.

[4]

Maksimovic D, Oklobdzija V G. Integrated power clock generators for low energy logic[J]. Proceedings of IEEE Power Electronics Specialists Conference, 1995: 61.

[5]

Nayan A N, Takahashi Y, Sekine T. LSI implementation of a low-power 4×4-bit array two-phase clocked adiabatic static CMOS logic multiplier[J]. Microelectron J, 2012, 43(4): 244. doi: 10.1016/j.mejo.2011.12.013

[6]

Moon Y, Jeong D K. A 32×32-b adiabatic register file with supply clock generator[J]. IEEE J Solid-State Circuits, 1998, 33(5): 696. doi: 10.1109/4.668983

[7]

Arsalan M, Shams M. Charge-recovery power clock generators for adiabatic logic circuits[J]. Proc 18th International Conference on VLSI Design, 2005: 171.

[8]

Maksimovic D, Oklobdzija V G, Nikolic B. Clocked CMOS adiabatic logic with integrated single-phase power-clock supply[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 2000, 8(4): 460. doi: 10.1109/92.863629

[9]

Marjonen J, Aberg M. A single phase clocked adiabatic static logic-a proposal for digital low power applications[J]. Kluwer Academic Pub J of VLSI Signal Processing, 2001, 27: 253. doi: 10.1023/A:1008143316204

[10]

Maksimovic D, Oklobdzija V G. Integrated power clock generators for low energy logic[J]. Proc 26th IEEE Annual Conf on Power Electronics Specialists (PESC), 1995, 1: 61. doi: 10.1109/PESC.1995.474793

[11]

Bargagli-Stoffi , Iannaccone G, Pascoli S D. Four-phase power clock generator for adiabatic logic circuits[J]. IEE Electron Lett, 2002, 38(14): 689. doi: 10.1049/el:20020523

[12]

Ziesier C H, Kim S, Papaefthymiou M C. A resonant clock generator for single-phase adiabatic systems[J]. Proc IEEE Int Symposium on Low Power Electronics and Design, 2001: 159.

[13]

Svensson L J, Koller J G. Driving a capacitive load without dissipating fCV2[J]. Proc IEEE Symposium on Low Power Electronics, Digest of Technical Papers, 1994: 100.

[14]

Teichmann P. Adiabatic logic:future trend and system level perspective-first edition[J]. Springer Series in Advanced Microelectronics, 2012.

[15]

Fisher J, Teichmann P, Landsiedel M D S. Scaling trends in adiabatic logic[J]. Proc ACM 2nd Conference on Computing Frontiers, 2005: 427.

[16]

Kanungo J, Dasgupta S. Scaling trends in energy recovery logic:an analytical approach[J]. Journal of Semiconductors, 2013, 34(8): 085001. doi: 10.1088/1674-4926/34/8/085001

[17]

Sathe V S, Chueh J Y, Papaefthyymiou M C. Energy-efficient GHz-class charge-recovery logic[J]. IEEE J Solid-State Circuits, 2007, 42(1): 38. doi: 10.1109/JSSC.2006.885053

[18]

Ziesler C H, Joohee K, Sathe V S. A 225 MHz resonant clocked ASIC chip[J]. Proc Int Symposium on Low Power Electronics and Design, 2003: 48.

[19]

Ziesler C H, Joohee K, Papaefthymiou M C. Energy recovering ASIC design[J]. Proc IEEE Computer Society Annual Symposium on VLSI, 2003: 133.

[20]

Kim S, Ziesler C H, Papaefthyymiou M C. A true-single phase energy-recovery multiplier[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 2003, 11(2): 194. doi: 10.1109/TVLSI.2003.810795

[21]

Masksimovic D, Oklobdzija V G, Nikolic B. Clocked CMOS adiabatic logic with integrated single-phase power-clock supply[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 2000, 8(4): 460. doi: 10.1109/92.863629

[22]

Baker R J. CMOS circuit design, layout, and simulation. 3rd ed. IEEE Series on Microelectronics Systems, Wiley, 2010

[23]

Nikolic B, Stojanovic V, Oklobdzija V G. Sense amplifier-based flip-flop[J]. Proc IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 1999: 283.

[24]

Wicht B, Nirschl T, Schmitt-Landsiedel D. Yield and speed optimization of a latch-type voltage sense amplifier[J]. IEEE J Solid-State Circuits, 2004, 39(7): 1148. doi: 10.1109/JSSC.2004.829399

[25]

Goll B, Zimmermann H. A comparator with reduced delay time in 65-nm CMOS for supply voltages down to 0.65 V[J]. IEEE Trans Circuits Syst Ⅱ:Express Briefs, 2009, 56(11): 810. doi: 10.1109/TCSII.2009.2030357

[26]

Athas W C, Svensson L J, Koller J G. Low-power digital systems based on adiabatic-switching principles[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 1994, 2(4): 398. doi: 10.1109/92.335009

[27]

Rabaey J M, Chandrakasan A, Nikolic B. Digital integrated circuits: a design perspective. 2nd ed. Prentice Hall Electronics and VLSI Series, Pearson Education, Singapore: Pte Ltd, 2003

[28]

Montanaro J, Witek R T, Anne K. A 160 MHz 32-b 0.5-W CMOS RISC microprocessor[J]. IEEE J Solid-State Circuits, 1996, 31(11): 1703. doi: 10.1109/JSSC.1996.542315

[29]

Mahmoodi H, Tirumalashetty V, Cooke M. Ultra low-power clocking scheme using energy recovery and clock gating[J]. IEEE Trans Very Large Scale Integration (VLSI) Systems, 2009, 17(1): 33. doi: 10.1109/TVLSI.2008.2008453

[30]

Mahmoodi-Meinnand H, Afzali-Kusha A, Nourani M. Adiabatic carry look-ahead adder with efficient power clock generator[J]. IEE Proceedings Circuits, Devices and Systems, 2001, 148(5): 229. doi: 10.1049/ip-cds:20010439

[1]

Li Shun, Zhou Feng, Chen Chunhong, Chen Hua, Wu Yipin. Quasi-Static Energy Recovery Logic with Single Power-Clock Supply. J. Semicond., 2007, 28(11): 1729.

[2]

Jitendra Kanungo, S. Dasgupta. Scaling trends in energy recovery logic:an analytical approach. J. Semicond., 2013, 34(8): 085001. doi: 10.1088/1674-4926/34/8/085001

[3]

Zhao Dixian, Yan Na, Xu Wen, Yang Liwu, Wang Junyu, Min Hao. A Low-Power,Single-Poly,Non-Volatile Memory for Passive RFID Tags. J. Semicond., 2008, 29(1): 99.

[4]

Pranav Kumar Asthana, Yogesh Goswami, Bahniman Ghosh. A novel sub 20 nm single gate tunnel field effect transistor with intrinsic channel forultra low power applications. J. Semicond., 2016, 37(5): 054002. doi: 10.1088/1674-4926/37/5/054002

[5]

Weisheng Li, Hongkai Ning, Zhihao Yu, Yi Shi, Xinran Wang. Reducing the power consumption of two-dimensional logic transistors. J. Semicond., 2019, 40(9): 091002. doi: 10.1088/1674-4926/40/9/091002

[6]

Nan Chen, Shengxi Diao, Lu Huang, Xuefei Bai, Fujiang Lin. Design optimizations of phase noise, power consumption and frequency tuning for VCO. J. Semicond., 2013, 34(9): 095009. doi: 10.1088/1674-4926/34/9/095009

[7]

Sun Yehui, Jiang Lixin, Qin Shicai. A Low Voltage Low Power CMOS 5Gb/s Transceiver. J. Semicond., 2007, 28(8): 1283.

[8]

Chenjian Wu, Zhiqun Li, Ge Sun. A low voltage low power up-conversion mixer for WSN application. J. Semicond., 2014, 35(4): 045006. doi: 10.1088/1674-4926/35/4/045006

[9]

Ying Jianhua, Chen Jia, Wang Jie. Design of Low Power,High PSRR Voltage Reference. J. Semicond., 2007, 28(6): 975.

[10]

Weiyang Liu, Jingjing Chen, Haiyong Wang, Nanjian Wu. A low power 2.4 GHz transceiver for ZigBee applications. J. Semicond., 2013, 34(8): 085007. doi: 10.1088/1674-4926/34/8/085007

[11]

Yu Yang, Zhao Qian, Shao Zhibiao. A Low Power SRAM/SOI Memory Cell Design. J. Semicond., 2006, 27(2): 318.

[12]

Quan Zhou, Shuxu Guo, Jingyi Song, Zhaohan Li, Guotong Du, Yuchun Chang. A low power discrete operation mode for punchthrough phototransistor. J. Semicond., 2013, 34(7): 074010. doi: 10.1088/1674-4926/34/7/074010

[13]

Li Guofeng, Geng Zhiqing, Wu Nanjian. A low power automatic gain control loop for a receiver. J. Semicond., 2010, 31(9): 095009. doi: 10.1088/1674-4926/31/9/095009

[14]

Li Bing, Zhuang Yiqi, Han Yeqi, Xing Xiaoling, Li Zhenrong, Long Qiang. A 0.18 μm CMOS single-inductor single-stage quadrature frontend for GNSS receiver. J. Semicond., 2011, 32(9): 095005. doi: 10.1088/1674-4926/32/9/095005

[15]

Haijun Wu, Bin Li, Huabin Zhang, Zhengping Li, Longyue Zeng. A single die 1.2 V 55 to 95 dB DR delta sigma ADC with configurable modulator and OSR. J. Semicond., 2014, 35(3): 035003. doi: 10.1088/1674-4926/35/3/035003

[16]

Wei Benfu, Yuan Guoshun. Design of a Low Noise,Low Power Audio Power Amplifierfor Driving Headphones. J. Semicond., 2006, 27(S1): 29.

[17]

Li Guofeng, Wu Nanjian. A low power flexible PGA for software defined radio systems. J. Semicond., 2012, 33(5): 055006. doi: 10.1088/1674-4926/33/5/055006

[18]

Zhao Gang, Hou Ligang, Luo Rengui, Liu Yuan, Wu Wuchen. Design and Optimization of Low-Power Processor for Wireless Sensor Network. J. Semicond., 2006, 27(S1): 370.

[19]

Kai Tang, Qiao Meng, Zhigong Wang, Ting Guo. A low power 20 GHz comparator in 90 nm COMS technology. J. Semicond., 2014, 35(5): 055002. doi: 10.1088/1674-4926/35/5/055002

[20]

Chen Shuai, Li Hao, Shi Xiaobing, Yang Liqiong, Yang Zongren, Zhong Shiqiang, Huang Lingyi. A low-power high-swing voltage-mode transmitter. J. Semicond., 2012, 33(4): 045003. doi: 10.1088/1674-4926/33/4/045003

Search

Advanced Search >>

GET CITATION

J Kanungo, S. Dasgupta. Performance analysis of a complete adiabatic logic system driven by the proposed power clock generator[J]. J. Semicond., 2014, 35(9): 095001. doi: 10.1088/1674-4926/35/9/095001.

Export: BibTex EndNote

Article Metrics

Article views: 451 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 11 February 2014 Manuscript revised: 08 April 2014 Online: Published: 01 September 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误