J. Semicond. > Volume 36 > Issue 1 > Article Number: 014014

A novel SOI pressure sensor for high temperature application

Sainan Li 1, 2, , Ting Liang 1, 2, , , Wei Wang 1, 2, , Yingping Hong 1, 2, , Tingli Zheng 1, 2, and Jijun Xiong 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 ℃ in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors.

Key words: SOIhigh temperature pressure sensordoping concentrationpower

Abstract: The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 ℃ in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors.

Key words: SOIhigh temperature pressure sensordoping concentrationpower



References:

[1]

Kurtz A D, Alexander A, Alan H E. Ultra high temperature, miniature SOI sensors for extreme environments[J]. The IMAPS International HiTEC Conference, New Mexico, USA, 2004: 1.

[2]

Zhao Y L, Zhao L B. A novel high temperature pressure sensor on the basis of SOI layer[J]. Sensors and Actuators A, 2003, 108(1-3): 108.

[3]

Geng Z Y, Song G Q, Zhang D M. Process of SOI pressure sensor based on MEMS[J]. Sensors in the World, 2010, 16(1): 28.

[4]

Sun K, Lv Y, Zhang D X. SOI pressure sensors and applications[J]. Instrument Technique and Sensor, 2009.

[5]

Li X, Liu Q, Pang S X. High-temperature piezoresistive pressure sensor based on implantation of oxygen into silicon wafer[J]. Sensors and Actuators A: Physical, 2012, 179: 277.

[6]

Guo S W, Harald E, Kimiko C. High temperature smart-cut SOI pressure sensor[J]. Sensors and Actuators A: Physical, 2009, 154: 255.

[7]

Tan Y Y, Yu H, Huang Q A. Temperature effect on Young's modulus of silicon nano-film[J]. Electron Devices, 2007, 30(3): 755.

[8]

Zhong C B. Research of pressure sensors based on MEMS technology[J]. Beijing University of Technology, 2008: 16.

[9]

Guo S W, Tian X D, Wang W. Temperature characteristics of microcrystalline and polyerystalline silicon pressure sensor[J]. Sensors and Actuators A: Physical, 1990, 21(1): 133.

[10]

Sun Y C, Liu Y L, Meng Q H. Pressure sensor: design, manufacture and application[J]. Beijing: Metallurgical Industry Press, 2000.

[11]

Yi X Q, Yuan W Z, Ma B H. Sensitive structure design of miniature piezoresistive pressure sensors[J]. Journal of Northwestern Poly Technical University, 2008, 26(6): 782.

[12]

Chen S Y. Technology research on system-in-package (SiP) MEMS of gas pressure sensor[J]. Nanchang University, 2008.

[13]

Xiong J J, Li Y, Hong Y P. Wireless LTCC-based capacitive pressure sensor for harsh environment[J]. Sensors and Actuators A: Physical, 2013, 197: 30.

[14]

Wang Quan, Ding Jianning, Wang Wenxiang. Fabrication of a pressure sensor gauge chip based on SIMOX[J]. Chinese Journal of Semiconductors, 2005, 26(8): 1595.

[1]

Kurtz A D, Alexander A, Alan H E. Ultra high temperature, miniature SOI sensors for extreme environments[J]. The IMAPS International HiTEC Conference, New Mexico, USA, 2004: 1.

[2]

Zhao Y L, Zhao L B. A novel high temperature pressure sensor on the basis of SOI layer[J]. Sensors and Actuators A, 2003, 108(1-3): 108.

[3]

Geng Z Y, Song G Q, Zhang D M. Process of SOI pressure sensor based on MEMS[J]. Sensors in the World, 2010, 16(1): 28.

[4]

Sun K, Lv Y, Zhang D X. SOI pressure sensors and applications[J]. Instrument Technique and Sensor, 2009.

[5]

Li X, Liu Q, Pang S X. High-temperature piezoresistive pressure sensor based on implantation of oxygen into silicon wafer[J]. Sensors and Actuators A: Physical, 2012, 179: 277.

[6]

Guo S W, Harald E, Kimiko C. High temperature smart-cut SOI pressure sensor[J]. Sensors and Actuators A: Physical, 2009, 154: 255.

[7]

Tan Y Y, Yu H, Huang Q A. Temperature effect on Young's modulus of silicon nano-film[J]. Electron Devices, 2007, 30(3): 755.

[8]

Zhong C B. Research of pressure sensors based on MEMS technology[J]. Beijing University of Technology, 2008: 16.

[9]

Guo S W, Tian X D, Wang W. Temperature characteristics of microcrystalline and polyerystalline silicon pressure sensor[J]. Sensors and Actuators A: Physical, 1990, 21(1): 133.

[10]

Sun Y C, Liu Y L, Meng Q H. Pressure sensor: design, manufacture and application[J]. Beijing: Metallurgical Industry Press, 2000.

[11]

Yi X Q, Yuan W Z, Ma B H. Sensitive structure design of miniature piezoresistive pressure sensors[J]. Journal of Northwestern Poly Technical University, 2008, 26(6): 782.

[12]

Chen S Y. Technology research on system-in-package (SiP) MEMS of gas pressure sensor[J]. Nanchang University, 2008.

[13]

Xiong J J, Li Y, Hong Y P. Wireless LTCC-based capacitive pressure sensor for harsh environment[J]. Sensors and Actuators A: Physical, 2013, 197: 30.

[14]

Wang Quan, Ding Jianning, Wang Wenxiang. Fabrication of a pressure sensor gauge chip based on SIMOX[J]. Chinese Journal of Semiconductors, 2005, 26(8): 1595.

[1]

Lu Shengli, Sun Zhilin, Sun Weifeng, Shi Longxing. A High Breakdown Voltage Thin SOI Device with a Vertically Linearly Graded Concentration Drift Region. J. Semicond., 2005, 26(12): 2286.

[2]

Luo Xiaorong, Li Zhaoji, Zhang Bo. A Highly Heat-Dissipating SOI High Voltage Power Device with a Variable k Dielectric Buried Layer. J. Semicond., 2006, 27(10): 1832.

[3]

Gao Huanmei, Luo Xiaorong, Zhang Wei, Deng Hao, Lei Tianfei. A new integrated SOI power device based on self-isolation technology. J. Semicond., 2010, 31(8): 084012. doi: 10.1088/1674-4926/31/8/084012

[4]

Zhu Kuiying, Qian Qinsong, Zhu Jing, Sun Weifeng. Process optimization of a deep trench isolation structure for high voltage SOI devices. J. Semicond., 2010, 31(12): 124009. doi: 10.1088/1674-4926/31/12/124009

[5]

Luo Xiaorong, Zhang Wei, Zhang Bo, Li Zhaoji, Yan Bin, Yang Shouguo. A New High Voltage SOI Device with a Nonuniform Thickness Drift Region and Its Optimization. J. Semicond., 2008, 29(10): 1902.

[6]

Yu Zongguang, Liu Zhan, Wang Guozhang, Xu Ziming. An ADI Method for the Breakdown Voltage Analysis of Thin-Film SOI RESURF Structure with the High-Order Compact Finite Difference. J. Semicond., 2006, 27(2): 354.

[7]

Xu Jingbo, Zhao Yulong, Jiang Zhuangde, Zhang Dacheng, Yang Fang, Sun Jian. Fabrication of Monolithic Silicon Multi-Sensor on SOI Wafer. J. Semicond., 2007, 28(2): 302.

[8]

Zhan Da, Ma Xiaobo, Liu Weili, Song Zhitang, Feng Songlin. Fabrication of SOI Material Using Low Temperature Bonding Technology. J. Semicond., 2006, 27(S1): 189.

[9]

Ma Long, Yi Xiaoyan, Guo Jinxia, Wang Liangchen, Wang Guohong, Li Jinmin. Research on Key Technologies of High Power GaN-Based LED. J. Semicond., 2005, 26(S1): 165.

[10]

Zhongxiang Cao, Quanliang Li, Ye Han, Qi Qin, Peng Feng, Liyuan Liu, Nanjian Wu. Process techniques of charge transfer time reduction for high speed CMOS image sensors. J. Semicond., 2014, 35(11): 114010. doi: 10.1088/1674-4926/35/11/114010

[11]

Luo Xiaorong, Hu Gangyi, Zhou Kun, Jiang Yongheng, Wang Pei, Wang Qi, Luo Yinchun, Zhang Bo, Li Zhaoji. High voltage SOI LDMOS with a compound buried layer. J. Semicond., 2012, 33(10): 104003. doi: 10.1088/1674-4926/33/10/104003

[12]

Wei Liu, Pengfei Yang, Chunrong Peng, Dongming Fang, Shanhong Xia. A new fabrication process for the SOI-based miniature electric field sensor. J. Semicond., 2013, 34(8): 086005. doi: 10.1088/1674-4926/34/8/086005

[13]

Lijuan Wu, Wentong Zhang, Bo Zhang, Zhaoji Li. A high voltage SOI pLDMOS with a partial interface equipotential floating buried layer. J. Semicond., 2013, 34(7): 074009. doi: 10.1088/1674-4926/34/7/074009

[14]

Hu Xiarong, Zhang Bo, Luo Xiaorong, Li Zhaoji. Universal trench design method for a high-voltage SOI trench LDMOS. J. Semicond., 2012, 33(7): 074006. doi: 10.1088/1674-4926/33/7/074006

[15]

Hong Guan, Hao Sun, Junlin Bao, Zhipeng Wang, Shuguang Zhou, Hongwei Zhu. High-performance RF Switch in 0.13 μm RF SOI process. J. Semicond., 2019, 40(2): 022401. doi: 10.1088/1674-4926/40/2/022401

[16]

Guo Yufeng, Wang Zhigong, Sheu Gene. A three-dimensional breakdown model of SOI lateral power transistors with a circular layout. J. Semicond., 2009, 30(11): 114006. doi: 10.1088/1674-4926/30/11/114006

[17]

Xu Wenjie, Sun Lingling, Liu Jun, Li Wenjun, Zhang Haipeng, Wu Yanming, He Jia. A Continuous and Analytical Surface Potential Model for SOI LDMOS. J. Semicond., 2007, 28(11): 1712.

[18]

Li Zunchao, Jiang Yaolin, Wu Jianmin. Dual Material Gate SOI MOSFET with a Single Halo. J. Semicond., 2007, 28(3): 327.

[19]

Hai Chaohe, Han Zhengsheng, Zhou Xiaoyin, Zhao Lixin, Li Duoli, Bi Jinshun. Study of Improved Performance of SOI Devices and Circuits. J. Semicond., 2006, 27(S1): 322.

[20]

Zhang Haipeng, Wei Tongli, Feng Yaolan, Wang Qin, Zhang Zhengfan. A Model of the Temperature Dependence of the Fall Time ofa TF SOI CMOS Inverter with EM NMOST and AMPMOST Assemblies at 27~300℃. J. Semicond., 2006, 27(S1): 36.

Search

Advanced Search >>

GET CITATION

S N Li, T Liang, W Wang, Y P Hong, T L Zheng, J J Xiong. A novel SOI pressure sensor for high temperature application[J]. J. Semicond., 2015, 36(1): 014014. doi: 10.1088/1674-4926/36/1/014014.

Export: BibTex EndNote

Article Metrics

Article views: 1466 Times PDF downloads: 23 Times Cited by: 0 Times

History

Manuscript received: 29 May 2014 Manuscript revised: Online: Published: 01 January 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误