J. Semicond. > Volume 36 > Issue 12 > Article Number: 123005

Transparent and conductive PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films prepared by spin-coating at room temperature

Qingqing Yue , Jinliang Yan , and Delan Meng

+ Author Affilications + Find other works by these authors

PDF

Abstract: PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films were deposited on PET substrates by the spin coating technique at room temperature. The optical transmittance, sheet resistance, crystallization and surface morphology were characterized by using the double beam spectrophotometer, Hall effect system, X-ray diffractometer and field emission scanning electron microscopy. XRD patterns of the hybrid films display characteristic diffraction peaks of Ag(111) and Ag(200), and the Ag NW networks have a polycrystalline structure with a Ag(111) preferred orientation. A high transmittance of 83.95% at the 550 nm wavelength and a low sheet resistance of 21.98Ω/□ are achieved for 3-PEDOT:PSS/5-Ag NW/3-PEDOT:PSS hybrid films.

Key words: transparent conductive filmsheet resistancetransmittancesilver nanowireshybrid films

Abstract: PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films were deposited on PET substrates by the spin coating technique at room temperature. The optical transmittance, sheet resistance, crystallization and surface morphology were characterized by using the double beam spectrophotometer, Hall effect system, X-ray diffractometer and field emission scanning electron microscopy. XRD patterns of the hybrid films display characteristic diffraction peaks of Ag(111) and Ag(200), and the Ag NW networks have a polycrystalline structure with a Ag(111) preferred orientation. A high transmittance of 83.95% at the 550 nm wavelength and a low sheet resistance of 21.98Ω/□ are achieved for 3-PEDOT:PSS/5-Ag NW/3-PEDOT:PSS hybrid films.

Key words: transparent conductive filmsheet resistancetransmittancesilver nanowireshybrid films



References:

[1]

Yang Gui, Zhang Yufeng, Yan Xunwang. Electronic structure and optical properties of a new type of semiconductor material:grapheme monoxide[J]. Journal of Semiconductors, 2013, 34(8): 083004.

[2]

Song S M, Yang T L, Xin Y Q. Effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of GZO/Ag/GZO sandwich films[J]. Current Applied Physics, 2010, 10(2): 452.

[3]

Yu X M, Yu X, Zhang J J. Investigation of light transmission and scattering properties in silver nanowire mesh transparent electrodes[J]. Mater Lett, 2015, 145: 219.

[4]

Liu B T, Hsu C H, Wang W H. A comparative study on preparation of conductive and transparent carbon nanotube thin films[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(1): 147.

[5]

Zhang W F, Bi X H, Zhao X M. Isopropanol-treated PEDOT:PSS as electron transport layer in polymer solar cells[J]. Org Electron, 2014, 15(12): 3445.

[6]

Lim J W, Cho D Y, Eun K. Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 105: 69.

[7]

Lim J W, Cho D Y, Kim J. Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 107: 348.

[8]

Li Z F, Qin F, Liu T F. Optical properties and conductivity of PEDOT:PSS films treated by polyethylenimine solution for organic solar cells[J]. Org Electron, 2015, 21: 144.

[9]

Ouyang J Y. "Secondary doping" methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices[J]. Displays, 2013, 34(5): 423.

[10]

Choi K H, Kim J, Noh Y J. Ag nanowire-embedded ITO films as a near-infrared transparent and flexible anode for flexible organic solar cells[J]. Solar Energy Materials & Solar Cells, 2013, 110: 147.

[11]

Lee H J, Hwang J H, Choi K B. Effective indium-doped dinc oxide buffer layer on silver nanowires for electrically highly stable, flexible, transparent, and conductive composite electrodes[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10397.

[12]

Park M, Sohn Y, Shin W G. Ultrasonication assisted production of silver nanowires with low aspect ratio and their optical properties[J]. Ultrasonics Sonochemistry, 2015, 22: 35.

[13]

Sun Y, Gates B, Mayers B. Crystalline silver nanowires by soft solution processing[J]. Nano Lett, 2002, 2(2): 165.

[14]

Gao Y, Song L, Jiang P. Silver nanowires with five-fold symmetric cross-section[J]. J Crystal Growth, 2005, 276(3/4): 606.

[15]

Kim A, Won Y, Woo K. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells[J]. ACS Nano, 2013, 7(2): 1081.

[16]

Ehrenreich H, Philipp H R. Optical properties of Ag and Cu[J]. Phys Rev, 1962, 128: 1622.

[17]

Kang S B, Noh Y J, Na S I. Brush-painted flexible organic solar cells using highly transparent and flexible Ag nanowire network electrodes[J]. Solar Energy Materials & Solar Cells, 2014, 122: 152.

[18]

Haacke G. New figure of merit for transparent conductors[J]. J Appl Phys, 1976, 47(9): 4086.

[1]

Yang Gui, Zhang Yufeng, Yan Xunwang. Electronic structure and optical properties of a new type of semiconductor material:grapheme monoxide[J]. Journal of Semiconductors, 2013, 34(8): 083004.

[2]

Song S M, Yang T L, Xin Y Q. Effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of GZO/Ag/GZO sandwich films[J]. Current Applied Physics, 2010, 10(2): 452.

[3]

Yu X M, Yu X, Zhang J J. Investigation of light transmission and scattering properties in silver nanowire mesh transparent electrodes[J]. Mater Lett, 2015, 145: 219.

[4]

Liu B T, Hsu C H, Wang W H. A comparative study on preparation of conductive and transparent carbon nanotube thin films[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(1): 147.

[5]

Zhang W F, Bi X H, Zhao X M. Isopropanol-treated PEDOT:PSS as electron transport layer in polymer solar cells[J]. Org Electron, 2014, 15(12): 3445.

[6]

Lim J W, Cho D Y, Eun K. Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 105: 69.

[7]

Lim J W, Cho D Y, Kim J. Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 107: 348.

[8]

Li Z F, Qin F, Liu T F. Optical properties and conductivity of PEDOT:PSS films treated by polyethylenimine solution for organic solar cells[J]. Org Electron, 2015, 21: 144.

[9]

Ouyang J Y. "Secondary doping" methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices[J]. Displays, 2013, 34(5): 423.

[10]

Choi K H, Kim J, Noh Y J. Ag nanowire-embedded ITO films as a near-infrared transparent and flexible anode for flexible organic solar cells[J]. Solar Energy Materials & Solar Cells, 2013, 110: 147.

[11]

Lee H J, Hwang J H, Choi K B. Effective indium-doped dinc oxide buffer layer on silver nanowires for electrically highly stable, flexible, transparent, and conductive composite electrodes[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10397.

[12]

Park M, Sohn Y, Shin W G. Ultrasonication assisted production of silver nanowires with low aspect ratio and their optical properties[J]. Ultrasonics Sonochemistry, 2015, 22: 35.

[13]

Sun Y, Gates B, Mayers B. Crystalline silver nanowires by soft solution processing[J]. Nano Lett, 2002, 2(2): 165.

[14]

Gao Y, Song L, Jiang P. Silver nanowires with five-fold symmetric cross-section[J]. J Crystal Growth, 2005, 276(3/4): 606.

[15]

Kim A, Won Y, Woo K. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells[J]. ACS Nano, 2013, 7(2): 1081.

[16]

Ehrenreich H, Philipp H R. Optical properties of Ag and Cu[J]. Phys Rev, 1962, 128: 1622.

[17]

Kang S B, Noh Y J, Na S I. Brush-painted flexible organic solar cells using highly transparent and flexible Ag nanowire network electrodes[J]. Solar Energy Materials & Solar Cells, 2014, 122: 152.

[18]

Haacke G. New figure of merit for transparent conductors[J]. J Appl Phys, 1976, 47(9): 4086.

[1]

Liu Jianjun, Yan Jinliang, Shi Liang, Li Ting. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering. J. Semicond., 2010, 31(10): 103001. doi: 10.1088/1674-4926/31/10/103001

[2]

Chengyang Xu, Jinliang Yan, Chao Li, Huihui Zhuang. The effect of the multi-period on the properties of deep-ultraviolet transparent conductive Ga2O3/ITO alternating multilayer films. J. Semicond., 2013, 34(10): 103004. doi: 10.1088/1674-4926/34/10/103004

[3]

Yang Weifeng, Liu Zhuguang, Zhang Feng, Huang Huolin, Wu Zhengyun. Structural,Electrical,and Optical Properties of Transparent Conductive Al-Doped ZnO Films Prepared by RF Magnetron Sputtering. J. Semicond., 2008, 29(12): 2311.

[4]

Bing Cheng, Yijun Yin, Jianqiang Han, Jie Zhang. The TCR of Ni24.9Cr72.5Si2.6 thin films deposited by DC and RF magnetronsputtering. J. Semicond., 2017, 38(5): 053005. doi: 10.1088/1674-4926/38/5/053005

[5]

Fatimah A. Noor, Mikrajuddin Abdullah, Sukirno, Khairurrijal. Comparison of electron transmittances and tunneling currents in an anisotropic TiNx/HfO2/SiO2/p-Si(100) metal–oxide–semiconductor (MOS) capacitor calculated using exponential- and Airy-wavefunction app. J. Semicond., 2010, 31(12): 124002. doi: 10.1088/1674-4926/31/12/124002

[6]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[7]

Kh. S. Karimov, M. Mahroof-Tahir, M. Saleem, N. Ahmad, A. Rashid. Optical transmission in thin films of vanadium compounds. J. Semicond., 2014, 35(7): 072002. doi: 10.1088/1674-4926/35/7/072002

[8]

Yu Fen, Yan Jinliang, Ma Qiuming. Influence of O2/Ar Ratio on Optical Properties of ZnO Films. J. Semicond., 2007, 28(S1): 153.

[9]

N. Boukhenoufa, R. Mahamdi, D. Rechem. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol-gel dip coating process. J. Semicond., 2016, 37(11): 113001. doi: 10.1088/1674-4926/37/11/113001

[10]

Wei Yuan, Xinzhou Wu, Weibing Gu, Jian Lin, Zheng Cui. Printed stretchable circuit on soft elastic substrate for wearable application. J. Semicond., 2018, 39(1): 015002. doi: 10.1088/1674-4926/39/1/015002

[11]

Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002

[12]

Abideen A. Ibiyemi, Ayodeji O Awodugba, Olusola Akinrinola, Abass A Faremi. Zinc-doped CdS nanoparticles synthesized by microwave-assisted deposition. J. Semicond., 2017, 38(9): 093002. doi: 10.1088/1674-4926/38/9/093002

[13]

Wang Xiaoyan, Wang Xiaoliang, Hu Guoxin, Wang Baozhu, Li Jianping, Xiao Hongling, Wang Junxi, Liu Hongxin, Zeng Yiping, Li Jinmin. Growth of High AI Content AIGaN Epilayer by MOCVD. J. Semicond., 2007, 28(S1): 193.

[14]

J.O. Akinlami, A.O. Ashamu. Optical properties of GaAs. J. Semicond., 2013, 34(3): 032002. doi: 10.1088/1674-4926/34/3/032002

[15]

Liu Bo, Song Zhitang, Feng Songlin, Chen Bomy. Effect of Si-Implantation on the Structure and Resistance of Ge2Sb2Te5. J. Semicond., 2006, 27(S1): 158.

[16]

Sujie Chen, Siying Li, Sai Peng, Yukun Huang, Jiaqing Zhao, Wei Tang, Xiaojun Guo. Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array. J. Semicond., 2018, 39(1): 013001. doi: 10.1088/1674-4926/39/1/013001

[17]

Yang Fengfan, Fang Liang, Li Li, Fu Guangzong, Zhang Yong, Li Mingwei, Yu Jiangtao. Structure and Seebeck Effect for Transparent and Conductive CdIn2O4 Thin Film. J. Semicond., 2007, 28(S1): 67.

[18]

Xinliang Chen, Congbo Yan, Xinhua Geng, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells. J. Semicond., 2014, 35(4): 043002. doi: 10.1088/1674-4926/35/4/043002

[19]

Guo Jing, Guo Xia, Liang Ting, Gu Xiaoling, Lin Qiaoming, Shen Guangdi. Effect of Hydrophilic and Hydrophobic Processes on the Transmittance of a GaAs/GaN Bonding Interface. J. Semicond., 2007, 28(7): 1092.

[20]

Xiaoqing Huo, Huaqing Si, Kun Zhao, Yingwu Zhang, Hongjuan Cheng, Yongkuan Xu. High infrared transmittance CdS single crystal grown by physical vapor transport. J. Semicond., 2018, 39(12): 123003. doi: 10.1088/1674-4926/39/12/123003

Search

Advanced Search >>

GET CITATION

Q Q Yue, J L Yan, D L Meng. Transparent and conductive PEDOT:PSS/Ag NW/PEDOT:PSS hybrid films prepared by spin-coating at room temperature[J]. J. Semicond., 2015, 36(12): 123005. doi: 10.1088/1674-4926/36/12/123005.

Export: BibTex EndNote

Article Metrics

Article views: 1018 Times PDF downloads: 31 Times Cited by: 0 Times

History

Manuscript received: 14 May 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误