J. Semicond. > 2015, Volume 36 > Issue 12 > Article Number: 123008

Preparation, electronic structure, and photoluminescent properties of Eu2+ activated BaSi2O5 powder phosphors for solid-state lighting

Donghua Cao , Hui Wang , , Hongjun Wei and Weiqiang Yang

+ Author Affiliations + Find other works by these authors
  • Corresponding author: Hui Wang, Wang Hui,Email:15613925832@163.com
  • PDF

    Abstract: The green-emitting phosphor BaSi2O5:Eu2+ was synthesized by the conventional solid state reaction. Using the CASTEP code, BaSi2O5 is calculated to be an intermediate band gap semiconductor with an indirect energy gap of about 3. 2 eV. As expected, the calculated optical band gap of BaSi2O5 is lower compared to the experimentally determined values. Eu2+-activated BaSi2O5 phosphor can be excited efficiently over a broad spectral range between 200 and 400 nm, and has an emission peak at 500 nm with a full width at half maximum of 95 nm. The study of concentration-dependent emission intensity shows the optimal concentration of the Eu2+ is 0.05 mol, and that concentration quenching occurs when the Eu2+ content is beyond the critical value. The external quantum efficiency of the optimized BaSi2O5:Eu2+ is 96. 1%, 70. 2% and 62. 1% under excitation at 315, 350 and 365 nm, respectively. The superior optical properties of the sample show the potential as an ultraviolet converting green-emitting phosphor for white light emitting diodes.

    Key words: light emitting diodethe green-emitting phosphor BaSi2O5Eu2+



    References:

    [1]

    Peon R, Doluweera G, Platonova I. Solid-state lighting:the only solution for the developing world[J]. Proceedings of SPIE Optics and Photonics, 2005, 5941: 109.

    [2]

    Sheu J K, Chang S J, Kuo C H. White-light emission from near UV InGaN-GaN LED chip percoated with blue/green/red phosphors[J]. IEEE Photouics Technol Lett, 2003, 15: 140.

    [3]

    Joung K P, Mi A L, Chang H K. White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties[J]. Appl Phys Lett, 2003, 82: 683.

    [4]

    Liu Jie, Sun Jiayue, Shi Chunshan. A new luminescent material:Li2CaSiO4:Eu2+[J]. Mater Lett, 2006, 60: 2830.

    [5]

    Blasse G, Wanmaker W L, Tervrugt J W. Fluorescence of Eu2+ activated ailicates[J]. J Electrochem Soc, 1968, 23: 189.

    [6]

    Lin Yuanhua, Zhang Zhongtai, Zhang Feng. Preparation of the ultrafine SrAl2O4:Eu, Dy needlike phosphor and its optical properties[J]. Mater Chem Phys, 2000, 65: 103.

    [7]

    Zhao Linghui, Wei Tongbo, Wang Junxi. Enhanced light extraction of InGaN LEDs with photonic crystals grown on p-GaN using selective-area epitaxy and nanospherical-lens photolithography[J]. Journal of Semiconductors, 2013, 34(10): 104005.

    [8]

    Hao Yan, Wand Yuhua, Zhang Zhanhui. Preparation and photoluminescence of Zn2SiO4:Mn2+ phosphor by combustion technique[J]. Chinese Journal of Luminescence, 2004, 25(4): 441.

    [9]

    Saradhi M P, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting[J]. Chem Mater, 2006, 18(22): 5267.

    [10]

    Cannas C, Mainas M, Musinu A. Structural investigations and luminescence properties of nanocrystalline europium-doped yttrium silicates prepared by a sol-gel technique[J]. Opt Mater, 2007, 29: 585.

    [11]

    Jung K Y, Lee H W, Jung H K. Luminescent properties of(Sr, Zn)Al2O4:Eu2+, B3+ particles as a potential green phosphor for UV LEDs[J]. Chem Mater, 2006, 18: 2249.

    [12]

    Zhou Y, Liu J, Yu M. Synthesis depending luminescence properties of Y3Al5O12:Re3+(Re=Ce, Sm, Tb) phosphors[J]. Mater Lett, 2002, 56: 628.

    [13]

    Yan M F, Huo T C D, Ling H C. Preparation of Y3Al5O12-based phosphor powders[J]. J Electrochem Soc, 1987, 134: 493.

    [14]

    Su Kai, Tilley T D, Michael J. Molecular and polymer precursor routes to manganse-doped zinc orthosilicate phosphors[J]. J Amer Chem Soc, 1996, 118: 3459.

    [15]

    Yang Zhiping, Li Xu, Li Xingmin. Synthesis of red-emitting phosphors Ca1-xSrxS:Eu2+ used in white light emitting diodes by combustion[J]. Journal of the Chinese Ceramic Society, 2006, 34(8): 365.

    [16]

    Gallini S, Jurado J R, Colomer M T. Combustion synthesis of nanometric powders of LaPO4 and Sr-substituted LaPO4[J]. Chem Mater, 2005, 17: 4154.

    [17]

    Lou C L, Duh J G, Chiou B S. Synthesis of Eu3+ activated yttrium oxysulfide red phosphor by flux fusion method[J]. Mater Chem Phys, 2001, 71: 179.

    [18]

    Liu Jie, Lian Hongzhou, Shi Chunshan. Improved optical photoluminescence by change compensation in the phosphor system CaMoO4:Eu3+[J]. Opt Mater, 2007, 29(12): 1591.

    [19]

    Kang Ming, Liu Jun, Sun Rong. Study on the preparation of red phosphor CaO:Eu3+, Na+ by high solid-state method[J]. Journal of Sichuan University(Engineering Science Edition), 2008, 40(2): 71.

    [20]

    Peng Wenshi, Liu Gaokui. Factor-group analysis of vibration spectra of calcite and aragonite group minerals[J]. Acta minerabgica Sinica, 1983, 3: 169.

    [21]

    Yang Nanru, Yue Wenhai. The handbook of inorganic metalbid meterials atla[J]. Wuhan:University of Wuhan Industry Press, 2000: 368.

    [22]

    Yang Qun, Wang Xinlin, Li Chaozhen. A Raman spectroscopic approach to the dinosaur fossils from Chuxiong[J]. J Optoelectron Laser, 2002, 13(5): 523.

    [23]

    Konningdtein J A, Grunberg P. The effect of strong crystal fields on the selection rules of electronic Raman transitions[J]. Chem Phys Lett, 1970, 6(4): 320.

    [24]

    Chen Yonghu, Liu Bo, Shi Chaoshu. VUV spectroscopy of GdPO4:Eu3+ and GdBO3:Eu3+[J]. Journal of the Chinese Earth Society, 2005, 23(4): 429.

    [25]

    Fu Shiliu, Yin Tao, Chai Fei. Solid state reaction mechanism and luminescence of Eu3+ doped Ca2SnO4 phosphor[J]. Journal of Inorganic Materials, 2007, 22(4): 647.

    [26]

    Akiyama M, Xu C N, Nonaka K. Intense visible light emission from Sr3Al2O6:Eu, Dy[J]. Appl Phys Lett, 1998, 73(21): 3046.

    [27]

    Pan Y, Sung H Y, Hao W. Hydrothermally-mediated preparation and photoluminescent properties of Sr3Al2O6:Eu3+ phosphor[J]. Materials Research Bulletin, 2006, 41: 225.

    [28]

    Page P, Ghildiyal R, Murthy K V R. Luminescence study of Sr3Al2O6:Tb3+ phosphor:photoluminescence and thermoluminescence aspects[J]. Materials Research Bulletin, 2007, 42: 261.

    [29]

    Page P, Ghildiyal R, Murthy K V R. Synthesis, characterization and luminescence of Sr3Al2O6 phosphor with trivalent rare earth dopant[J]. Materials Research Bulletin, 2006, 41: 1854.

    [30]

    Xu Yebin, He Yanyan, Xiao Yuan. Preparation of nanocrystalline Sr3Al2O6 powders via citric acid precursor[J]. Powder Technology, 2007, 172: 99.

    [31]

    Zhang Ping, Xu Mingxia, Zheng Zhentai. Rapid formation of red long afterglow phosphor Sr3Al2O6:Eu2+, Dy3+ by microwave irradiation[J]. Mate Sci Eng, 2007(B 136): 159.

    [32]

    Zhang Ping, Li Lingxia, Xu Mingxia. The new red luminescent Sr3Al2O6:Eu2+ phosphor powders synthesized cia sol-gel route by microwave-assisted[J]. J Alloys Comp, 2007, 125: 23.

    [33]

    Song Y K, Choi S K, Moon H S. Phase studies of SrO-Al2O3 by emission signatures of Eu2+ and Eu3+[J]. Materials Research Bulletin, 1997, 32(3): 337.

    [34]

    Smets B, Rutten J, Hoeks G. 2SrO·3Al2O3:Eu2+ and 1.29(Ba, Ca)O·6Al2O3:Eu2+ two new blue-emitting phosphors[J]. Electrochem Soc, 1989, 136(7): 2119.

    [35]

    Zhou Y H, Lin J, Wang S B. Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties[J]. Opt Mater, 2002, 20(1): 13.

    [36]

    Zhang Junji, Ning Jinwei, Liu Xuejian. Low temperature synthesis of single phase nanocrystalline YAG:Eu phosphor[J]. J Mater Sci Lett, 2003, 22(1): 13.

    [37]

    Pei Zhiwu, Su Qiang. The valence change from RE3+ to RE2+(RE=Eu, Sm, Yb) in SrB4O7:RE prepared in air and the spectral properties of RE2+[J]. J Alloys Compds, 1993, 198: 51.

    [38]

    Alonso J A, Rasines I, Soubeyroux J L. Tristrontiumdialuminum hexaoxide:an intricates superstructure of perovskite[J]. Inorg Chem, 1990, 29: 4771.

    [39]

    Glasser F P, Glasser L S D. Crystal chemistry of some AB2O4 compounds[J]. J Amer Cream Soc, 1963, 46: 377.

    [40]

    Zhang Junying, Zhang Zhongtai. The luminescence of Y2SiO5:Gd, Eu phosphor with sol-gel method[J]. Mater Rev, 2000, 14: 207.

    [41]

    He Hong, Liang Hongbin, Yu Yingning. The study of the spectrum within VUV-VIS of La2CaB10O19:Eu3+[J]. Journal of Rare Earths, 2002, 20(6): 556.

    [1]

    Peon R, Doluweera G, Platonova I. Solid-state lighting:the only solution for the developing world[J]. Proceedings of SPIE Optics and Photonics, 2005, 5941: 109.

    [2]

    Sheu J K, Chang S J, Kuo C H. White-light emission from near UV InGaN-GaN LED chip percoated with blue/green/red phosphors[J]. IEEE Photouics Technol Lett, 2003, 15: 140.

    [3]

    Joung K P, Mi A L, Chang H K. White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties[J]. Appl Phys Lett, 2003, 82: 683.

    [4]

    Liu Jie, Sun Jiayue, Shi Chunshan. A new luminescent material:Li2CaSiO4:Eu2+[J]. Mater Lett, 2006, 60: 2830.

    [5]

    Blasse G, Wanmaker W L, Tervrugt J W. Fluorescence of Eu2+ activated ailicates[J]. J Electrochem Soc, 1968, 23: 189.

    [6]

    Lin Yuanhua, Zhang Zhongtai, Zhang Feng. Preparation of the ultrafine SrAl2O4:Eu, Dy needlike phosphor and its optical properties[J]. Mater Chem Phys, 2000, 65: 103.

    [7]

    Zhao Linghui, Wei Tongbo, Wang Junxi. Enhanced light extraction of InGaN LEDs with photonic crystals grown on p-GaN using selective-area epitaxy and nanospherical-lens photolithography[J]. Journal of Semiconductors, 2013, 34(10): 104005.

    [8]

    Hao Yan, Wand Yuhua, Zhang Zhanhui. Preparation and photoluminescence of Zn2SiO4:Mn2+ phosphor by combustion technique[J]. Chinese Journal of Luminescence, 2004, 25(4): 441.

    [9]

    Saradhi M P, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4-a potential orange-yellow phosphor for solid-state lighting[J]. Chem Mater, 2006, 18(22): 5267.

    [10]

    Cannas C, Mainas M, Musinu A. Structural investigations and luminescence properties of nanocrystalline europium-doped yttrium silicates prepared by a sol-gel technique[J]. Opt Mater, 2007, 29: 585.

    [11]

    Jung K Y, Lee H W, Jung H K. Luminescent properties of(Sr, Zn)Al2O4:Eu2+, B3+ particles as a potential green phosphor for UV LEDs[J]. Chem Mater, 2006, 18: 2249.

    [12]

    Zhou Y, Liu J, Yu M. Synthesis depending luminescence properties of Y3Al5O12:Re3+(Re=Ce, Sm, Tb) phosphors[J]. Mater Lett, 2002, 56: 628.

    [13]

    Yan M F, Huo T C D, Ling H C. Preparation of Y3Al5O12-based phosphor powders[J]. J Electrochem Soc, 1987, 134: 493.

    [14]

    Su Kai, Tilley T D, Michael J. Molecular and polymer precursor routes to manganse-doped zinc orthosilicate phosphors[J]. J Amer Chem Soc, 1996, 118: 3459.

    [15]

    Yang Zhiping, Li Xu, Li Xingmin. Synthesis of red-emitting phosphors Ca1-xSrxS:Eu2+ used in white light emitting diodes by combustion[J]. Journal of the Chinese Ceramic Society, 2006, 34(8): 365.

    [16]

    Gallini S, Jurado J R, Colomer M T. Combustion synthesis of nanometric powders of LaPO4 and Sr-substituted LaPO4[J]. Chem Mater, 2005, 17: 4154.

    [17]

    Lou C L, Duh J G, Chiou B S. Synthesis of Eu3+ activated yttrium oxysulfide red phosphor by flux fusion method[J]. Mater Chem Phys, 2001, 71: 179.

    [18]

    Liu Jie, Lian Hongzhou, Shi Chunshan. Improved optical photoluminescence by change compensation in the phosphor system CaMoO4:Eu3+[J]. Opt Mater, 2007, 29(12): 1591.

    [19]

    Kang Ming, Liu Jun, Sun Rong. Study on the preparation of red phosphor CaO:Eu3+, Na+ by high solid-state method[J]. Journal of Sichuan University(Engineering Science Edition), 2008, 40(2): 71.

    [20]

    Peng Wenshi, Liu Gaokui. Factor-group analysis of vibration spectra of calcite and aragonite group minerals[J]. Acta minerabgica Sinica, 1983, 3: 169.

    [21]

    Yang Nanru, Yue Wenhai. The handbook of inorganic metalbid meterials atla[J]. Wuhan:University of Wuhan Industry Press, 2000: 368.

    [22]

    Yang Qun, Wang Xinlin, Li Chaozhen. A Raman spectroscopic approach to the dinosaur fossils from Chuxiong[J]. J Optoelectron Laser, 2002, 13(5): 523.

    [23]

    Konningdtein J A, Grunberg P. The effect of strong crystal fields on the selection rules of electronic Raman transitions[J]. Chem Phys Lett, 1970, 6(4): 320.

    [24]

    Chen Yonghu, Liu Bo, Shi Chaoshu. VUV spectroscopy of GdPO4:Eu3+ and GdBO3:Eu3+[J]. Journal of the Chinese Earth Society, 2005, 23(4): 429.

    [25]

    Fu Shiliu, Yin Tao, Chai Fei. Solid state reaction mechanism and luminescence of Eu3+ doped Ca2SnO4 phosphor[J]. Journal of Inorganic Materials, 2007, 22(4): 647.

    [26]

    Akiyama M, Xu C N, Nonaka K. Intense visible light emission from Sr3Al2O6:Eu, Dy[J]. Appl Phys Lett, 1998, 73(21): 3046.

    [27]

    Pan Y, Sung H Y, Hao W. Hydrothermally-mediated preparation and photoluminescent properties of Sr3Al2O6:Eu3+ phosphor[J]. Materials Research Bulletin, 2006, 41: 225.

    [28]

    Page P, Ghildiyal R, Murthy K V R. Luminescence study of Sr3Al2O6:Tb3+ phosphor:photoluminescence and thermoluminescence aspects[J]. Materials Research Bulletin, 2007, 42: 261.

    [29]

    Page P, Ghildiyal R, Murthy K V R. Synthesis, characterization and luminescence of Sr3Al2O6 phosphor with trivalent rare earth dopant[J]. Materials Research Bulletin, 2006, 41: 1854.

    [30]

    Xu Yebin, He Yanyan, Xiao Yuan. Preparation of nanocrystalline Sr3Al2O6 powders via citric acid precursor[J]. Powder Technology, 2007, 172: 99.

    [31]

    Zhang Ping, Xu Mingxia, Zheng Zhentai. Rapid formation of red long afterglow phosphor Sr3Al2O6:Eu2+, Dy3+ by microwave irradiation[J]. Mate Sci Eng, 2007(B 136): 159.

    [32]

    Zhang Ping, Li Lingxia, Xu Mingxia. The new red luminescent Sr3Al2O6:Eu2+ phosphor powders synthesized cia sol-gel route by microwave-assisted[J]. J Alloys Comp, 2007, 125: 23.

    [33]

    Song Y K, Choi S K, Moon H S. Phase studies of SrO-Al2O3 by emission signatures of Eu2+ and Eu3+[J]. Materials Research Bulletin, 1997, 32(3): 337.

    [34]

    Smets B, Rutten J, Hoeks G. 2SrO·3Al2O3:Eu2+ and 1.29(Ba, Ca)O·6Al2O3:Eu2+ two new blue-emitting phosphors[J]. Electrochem Soc, 1989, 136(7): 2119.

    [35]

    Zhou Y H, Lin J, Wang S B. Preparation of Y3Al5O12:Eu phosphors by citric-gel method and their luminescent properties[J]. Opt Mater, 2002, 20(1): 13.

    [36]

    Zhang Junji, Ning Jinwei, Liu Xuejian. Low temperature synthesis of single phase nanocrystalline YAG:Eu phosphor[J]. J Mater Sci Lett, 2003, 22(1): 13.

    [37]

    Pei Zhiwu, Su Qiang. The valence change from RE3+ to RE2+(RE=Eu, Sm, Yb) in SrB4O7:RE prepared in air and the spectral properties of RE2+[J]. J Alloys Compds, 1993, 198: 51.

    [38]

    Alonso J A, Rasines I, Soubeyroux J L. Tristrontiumdialuminum hexaoxide:an intricates superstructure of perovskite[J]. Inorg Chem, 1990, 29: 4771.

    [39]

    Glasser F P, Glasser L S D. Crystal chemistry of some AB2O4 compounds[J]. J Amer Cream Soc, 1963, 46: 377.

    [40]

    Zhang Junying, Zhang Zhongtai. The luminescence of Y2SiO5:Gd, Eu phosphor with sol-gel method[J]. Mater Rev, 2000, 14: 207.

    [41]

    He Hong, Liang Hongbin, Yu Yingning. The study of the spectrum within VUV-VIS of La2CaB10O19:Eu3+[J]. Journal of Rare Earths, 2002, 20(6): 556.

    Search

    Advanced Search >>

    GET CITATION

    D H Cao, H Wang, H J Wei, W Q Yang. Preparation, electronic structure, and photoluminescent properties of Eu2+ activated BaSi2O5 powder phosphors for solid-state lighting[J]. J. Semicond., 2015, 36(12): 123008. doi: 10.1088/1674-4926/36/12/123008.

    Export: BibTex EndNote

    Article Metrics

    Article views: 2025 Times PDF downloads: 7 Times Cited by: 0 Times

    History

    Manuscript received: 26 March 2015 Manuscript revised: Online: Published: 01 December 2015

    Email This Article

    User name:
    Email:*请输入正确邮箱
    Code:*验证码错误