J. Semicond. > Volume 36 > Issue 4 > Article Number: 043001

An ab initio study of strained two-dimensional MoSe2

Bahniman Ghosh 1, 2, and Naval Kishor 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: We have studied the electronic properties of molybdenum diselenide (MoSe2) in both bulk and monolayer (zigzag and armchair) forms using density function theory. The metallic nature of the zigzag MoSe2 (ZMoSe2) nanoribbon and the semiconducting behavior of the armchair MoSe2 (AMoSe2) nanoribbon have been explored using a band structure calculated using self-consistent calculations. We have also studied the variation in the bandgap in the presence of a small amount of strain (uniaxial, biaxial). The effect of tensile strain has been investigated and shifts in the conduction band and valance band have been observed with different amounts of applied strain.

Key words: MoSe2band structureself-consistent calculations

Abstract: We have studied the electronic properties of molybdenum diselenide (MoSe2) in both bulk and monolayer (zigzag and armchair) forms using density function theory. The metallic nature of the zigzag MoSe2 (ZMoSe2) nanoribbon and the semiconducting behavior of the armchair MoSe2 (AMoSe2) nanoribbon have been explored using a band structure calculated using self-consistent calculations. We have also studied the variation in the bandgap in the presence of a small amount of strain (uniaxial, biaxial). The effect of tensile strain has been investigated and shifts in the conduction band and valance band have been observed with different amounts of applied strain.

Key words: MoSe2band structureself-consistent calculations



References:

[1]

Novoselov K S, Geim A K, Morosov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666.

[2]

Neto A H C, Guinea F, Peres N M R. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81: 109.

[3]

Du X, Skachko I, Barker A. Approaching ballistic transport in suspended graphene[J]. Nat Nano, 2008, 3: 491.

[4]

Bolotin K I, Sikes K J, Jiang Z. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146: 351.

[5]

Zhang Y, Tang T T, Girit C. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459: 820.

[6]

Shih C J, Vijayaraghavan A, Krishnan R. Bi- and trilayer graphene solutions[J]. Nature Nanotechnol, 2011, 6: 439.

[7]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotechnol, 2011, 6: 147.

[8]

Liu H, Ye P D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric[J]. IEEE Electron Device Lett, 2012, 33: 546.

[9]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotechnol, 2011, 6: 147.

[10]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695.

[11]

Li H, Yin Z, He Q. Optical identification of single- and few-layer MoS2 sheets[J]. Small, 2012, 8: 63.

[12]

Coleman J N, Lotya M, O'Neill A. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331: 568.

[13]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences USA, 2005, 102: 10451.

[14]

Mak K F, Lee C, Hone J. Atomically thin MoS2: a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 136805.

[15]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotechnol, 2011, 6: 147.

[16]

Liu H, Ye P D. MoS2 dual-gate MOSFET with atomic layer-deposited Al2O3 as top-gate dielectric[J]. IEEE Trans Electron Devices, 2012, 33: 546.

[17]

Qiu H, Pan L, Yao Z. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances[J]. Appl Phys Lett, 2012, 100: 123104.

[18]

Lee K, Kim H Y, Lotya M. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation[J]. Adv Mater, 2011, 23: 4178.

[19]

Jaeger-Waldau A, Lux-Steiner M C, Jaeger-Waldau R. Springer Proc Phys[J]. Springer Proc Phys, 1991, 54-397.

[20]

Tongay S, Zhou J, Ataca C. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2[J]. Nano Lett, 2012, 12(11): 5576.

[21]

Wang Q H, Kalantar-Zadeh , Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnol, 2007, 7: 699.

[22]

Thompson S, Anand N, Armstrong M. A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell[J]. International Electron Devices Meeting Technical Digest, 2002: 61.

[23]

Tongay S, Zhou J, Ataca C. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2[J]. Nano Lett, 2012, 12(11): 5576.

[24]

Yun W S, Han S, Hong S C. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)[J]. Phys Rev B, 2012, 85: 033305.

[25]

Ukrainskii J M, Novoselova A B. Dokl Chem Nauk SRRR[J]. Dokl Chem Nauk SRRR, 1961, 139-1136.

[26]

Atomistix v. 2012[J]. .

[27]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13: 5188.

[1]

Novoselov K S, Geim A K, Morosov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666.

[2]

Neto A H C, Guinea F, Peres N M R. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81: 109.

[3]

Du X, Skachko I, Barker A. Approaching ballistic transport in suspended graphene[J]. Nat Nano, 2008, 3: 491.

[4]

Bolotin K I, Sikes K J, Jiang Z. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146: 351.

[5]

Zhang Y, Tang T T, Girit C. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459: 820.

[6]

Shih C J, Vijayaraghavan A, Krishnan R. Bi- and trilayer graphene solutions[J]. Nature Nanotechnol, 2011, 6: 439.

[7]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotechnol, 2011, 6: 147.

[8]

Liu H, Ye P D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric[J]. IEEE Electron Device Lett, 2012, 33: 546.

[9]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotechnol, 2011, 6: 147.

[10]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695.

[11]

Li H, Yin Z, He Q. Optical identification of single- and few-layer MoS2 sheets[J]. Small, 2012, 8: 63.

[12]

Coleman J N, Lotya M, O'Neill A. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331: 568.

[13]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences USA, 2005, 102: 10451.

[14]

Mak K F, Lee C, Hone J. Atomically thin MoS2: a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 136805.

[15]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotechnol, 2011, 6: 147.

[16]

Liu H, Ye P D. MoS2 dual-gate MOSFET with atomic layer-deposited Al2O3 as top-gate dielectric[J]. IEEE Trans Electron Devices, 2012, 33: 546.

[17]

Qiu H, Pan L, Yao Z. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances[J]. Appl Phys Lett, 2012, 100: 123104.

[18]

Lee K, Kim H Y, Lotya M. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation[J]. Adv Mater, 2011, 23: 4178.

[19]

Jaeger-Waldau A, Lux-Steiner M C, Jaeger-Waldau R. Springer Proc Phys[J]. Springer Proc Phys, 1991, 54-397.

[20]

Tongay S, Zhou J, Ataca C. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2[J]. Nano Lett, 2012, 12(11): 5576.

[21]

Wang Q H, Kalantar-Zadeh , Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnol, 2007, 7: 699.

[22]

Thompson S, Anand N, Armstrong M. A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell[J]. International Electron Devices Meeting Technical Digest, 2002: 61.

[23]

Tongay S, Zhou J, Ataca C. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2[J]. Nano Lett, 2012, 12(11): 5576.

[24]

Yun W S, Han S, Hong S C. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)[J]. Phys Rev B, 2012, 85: 033305.

[25]

Ukrainskii J M, Novoselova A B. Dokl Chem Nauk SRRR[J]. Dokl Chem Nauk SRRR, 1961, 139-1136.

[26]

Atomistix v. 2012[J]. .

[27]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13: 5188.

[1]

N Divya Bharathi, K Sivasankaran. Research progress and challenges of two dimensional MoS2 field effect transistors. J. Semicond., 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002

[2]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[3]

Jie Chen, Weiyou Zeng. Coupling effect of quantum wells on band structure. J. Semicond., 2015, 36(10): 102005. doi: 10.1088/1674-4926/36/10/102005

[4]

You Siyu, Wang Yan. Band Structures of Si Nanowires with Different Surface Terminations. J. Semicond., 2006, 27(11): 1927.

[5]

Zhang Jiahong, Huang Qing’an, Yu Hong, Lei Shuangying. A Theoretical Study of the Piezoresistivity of a p-Type Silicon Nanoplate. J. Semicond., 2008, 29(5): 970.

[6]

Wei Kangliang, Liu Xiaoyan, Du Gang, Han Ruqi. Simulation of carrier transport in heterostructures using the 2D self-consistent full-band ensemble Monte Carlo method. J. Semicond., 2010, 31(8): 084004. doi: 10.1088/1674-4926/31/8/084004

[7]

Le Huang, Nengjie Huo, Zhaoqiang Zheng, Huafeng Dong, Jingbo Li. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr3/MoSe2. J. Semicond., 2020, 41(5): 052206. doi: 10.1088/1674-4926/41/5/052206

[8]

W. Nakwaski, R.P. Sarzała. Comprehensive and fully self-consistent modeling of modern semiconductor lasers. J. Semicond., 2016, 37(2): 024001. doi: 10.1088/1674-4926/37/2/024001

[9]

Sun Lin, Yang Wenwei, Xiang Cailan, Yu Zhiping, Tian Lilin. A Broyden Method for Self-Consistent Solution of Schrdinger and Poisson Equations. J. Semicond., 2005, 26(12): 2344.

[10]

Mihir M. Vora, Aditya M. Vora. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond., 2012, 33(1): 012001. doi: 10.1088/1674-4926/33/1/012001

[11]

Qian Yang, Yongzhou Xue, Hao Chen, Xiuming Dou, Baoquan Sun. Photo-induced doping effect and dynamic process in monolayer MoSe2. J. Semicond., 2020, 41(8): 082004. doi: 10.1088/1674-4926/41/8/082004

[12]

Qiang Gao, Hasan Sahin, Jun Kang. Strain tunable band structure of a new 2D carbon allotrope C568. J. Semicond., 2020, 41(8): 082005. doi: 10.1088/1674-4926/41/8/082005

[13]

Jinliang Yan, Chong Qu. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations. J. Semicond., 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[14]

Sandong Guo . First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure. J. Semicond., 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

[15]

Dandeswar Deka, A. Rahman, R. K. Thap. Calculations of DOS and electronic structure in Bi2S3 and Bi2Se3 by using FP-LAPW method. J. Semicond., 2015, 36(2): 022002. doi: 10.1088/1674-4926/36/2/022002

[16]

Zhang Zhiguo. Energy Band Structure and Conducting Characteristics of ITO Films. J. Semicond., 2006, 27(5): 840.

[17]

Liping Qiao, Changchun Chai, Yintang Yang, Xinhai Yu, Chunlei Shi. Strain effects on band structure of wurtzite ZnO: a GGA + U study. J. Semicond., 2014, 35(7): 073004. doi: 10.1088/1674-4926/35/7/073004

[18]

Mei Lin, Yixu Xu, Jianhua Zhang, Shunqing Wu, Zizhong Zhu. Hybrid functional calculations on the band gap bowing parameters of InxGa1-xN. J. Semicond., 2016, 37(4): 042001. doi: 10.1088/1674-4926/37/4/042001

[19]

Pengxiang Bai, Shiying Guo, Shengli Zhang, Hengze Qu, Wenhan Zhou, Haibo Zeng. Electronic band structures and optical properties of atomically thin AuSe: first-principle calculations. J. Semicond., 2019, 40(6): 062004. doi: 10.1088/1674-4926/40/6/062004

[20]

Li Xianjie, Cai Daomin, Zhao Yonglin, Wang Quanshu, Zhou Zhou, Zeng Qingming. Design and Process for Self-Aligned InP/InGaAs SHBT Structure. J. Semicond., 2005, 26(S1): 136.

Search

Advanced Search >>

GET CITATION

B Ghosh, N Kishor. An ab initio study of strained two-dimensional MoSe2[J]. J. Semicond., 2015, 36(4): 043001. doi: 10.1088/1674-4926/36/4/043001.

Export: BibTex EndNote

Article Metrics

Article views: 1160 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 28 August 2014 Manuscript revised: Online: Published: 01 April 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误