J. Semicond. > Volume 36 > Issue 4 > Article Number: 043004

The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3

Peijiang Niu , Jinliang Yan , and Delan Meng

+ Author Affiliations + Find other works by these authors

PDF

Abstract: By using spin-polarized density functional theory calculations, the electron density differences, band structures and density of states of p-type N-doped PbTiO3 have been studied. In addition, the oxygen vacancy in N-doped PbTiO3 is also discussed. After the nitrogen dopant is introduced into the crystal, the N-doped PbTiO3 system is spin-polarized, the spin-down valance bands move to a high energy level and the Fermi energy level moves to the top of the valance bands, finally the band gap is narrowed. In this process, the N-doped PbTiO3 shows typical p-type semiconductor characteristics. When an oxygen vacancy and N impurity coexist in PbTiO3, there is no spin-polarized phenomenon. The conduction bands move downward and the acceptors are found to be fully compensated. The calculation results are mostly consistent with the experimental data.

Key words: semiconductor dopingelectric propertiesoptical band gapsoptical propertieslead titanate

Abstract: By using spin-polarized density functional theory calculations, the electron density differences, band structures and density of states of p-type N-doped PbTiO3 have been studied. In addition, the oxygen vacancy in N-doped PbTiO3 is also discussed. After the nitrogen dopant is introduced into the crystal, the N-doped PbTiO3 system is spin-polarized, the spin-down valance bands move to a high energy level and the Fermi energy level moves to the top of the valance bands, finally the band gap is narrowed. In this process, the N-doped PbTiO3 shows typical p-type semiconductor characteristics. When an oxygen vacancy and N impurity coexist in PbTiO3, there is no spin-polarized phenomenon. The conduction bands move downward and the acceptors are found to be fully compensated. The calculation results are mostly consistent with the experimental data.

Key words: semiconductor dopingelectric propertiesoptical band gapsoptical propertieslead titanate



References:

[1]

Hosseini S M, Movlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B, 2007, 391(2): 316.

[2]

Piskunov S, Heifets E, Eglitis R I. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study[J]. Computational Materials Science, 2004, 29(2): 165.

[3]

Leite E R, Santos L P S, Carreno N L V. Photoluminescence of nanostructured PbTiO3 processed by high-energy mechanical milling[J]. Appl Phys Lett, 2001, 78(15): 2148.

[4]

Cetin K, Alex Z. n-type doping of oxides by hydrogen[J]. Appl Phys Lett, 2002, 81(1): 73.

[5]

Pontes F M, Pontes D S L, Leite E R. Influence of Ca concentration on the electric, morphological, and structural properties of (Pb,Ca)TiO3 thin films[J]. J Appl Phys, 2002, 91(10): 6650.

[6]

Van M N, Oanh L M, Van D P. Investigation of structural, optical and magnetic properties in PbTi1- xFexO3 ceramics[J]. Ceramics International, 2011, 37(8): 3785.

[7]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865.

[8]

Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B, 1996, 54(23): 16533.

[9]

Boonchun A, Smith M F, Cherdhirunkorn B. First principles study of Mn impurities in PbTiO3 and PbZrO3[J]. J Appl Phys, 2007, 101(4): 043521.

[10]

Nelmes R J, Kuhs W F. The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K[J]. Solid State Commun, 1985, 54(8): 721.

[11]

Kuroiwa Y, Aoyagi S, Sawada A. Evidence for Pb-O covalency in tetragonal PbTiO3[J]. Phys Rev Lett, 2001, 87(21): 217601.

[12]

Xu Chengyang, Yan Jinliang, Zhuang Huihui. Structural and electrical properties of Sn-doped Ga1.375In0.625O3 with different doping concentrations[J]. Physica B, 2014, 443-125.

[13]

Liu Z P, Gong X Q, Kohanoff J. Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au[J]. Phys Rev Lett, 2003, 91(26): 266102.

[14]

Hosseini S M, Movlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B: Condensed Matter, 2007, 391(2): 316.

[15]

Lv H Z, Gao H W, Yang Y. Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3[J]. App Catalysis A: General, 2011, 404(1): 54.

[16]

Pintilie L, Alexe M, Pintilie I. Thermally stimulated currents in PbTiO3 thin films[J]. Ferroelectrics, 1997, 201(1): 217.

[17]

Lange B, Freysoldt C, Neugebauer J. Native and hydrogen-containing point defects in Mg3N2: a density functional theory study[J]. Phys Re B, 2010, 81(22): 224109.

[18]

Zhang L Y, Yan J L, Zhang Y J. Effects of N-doping concentration on the electronic structure and optical properties of N-doped beta-Ga2O3[J]. Chinese Physics B, 2012, 21(6): 067102.

[19]

Morikawa T, Asahi R, Ohwaki T. Band-gap narrowing of titanium dioxide by nitrogen doping[J]. Jpn J Appl Phys, 2001, 40(6A).

[20]

Nolan M, Elliott S D. The p-type conduction mechanism in Cu2O: a first principles study[J]. Phys Chem Chem Phys, 2006, 8(45): 5350.

[21]

Lee J Y, Park J, Cho J H. Electronic properties of N- and C-doped TiO2[J]. Appl Phys Lett, 2005, 87(1): 011904.

[22]

Mahan G D. Energy gap in Si and Ge: impurity dependence[J]. J Appl Phys, 1980, 51(5): 2634.

[23]

Lu Jianguo, Ye Zhizhen, Wang Lei. Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD[J]. Materials Science in Semiconductor Processing, 2002, 5(6): 491.

[1]

Hosseini S M, Movlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B, 2007, 391(2): 316.

[2]

Piskunov S, Heifets E, Eglitis R I. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study[J]. Computational Materials Science, 2004, 29(2): 165.

[3]

Leite E R, Santos L P S, Carreno N L V. Photoluminescence of nanostructured PbTiO3 processed by high-energy mechanical milling[J]. Appl Phys Lett, 2001, 78(15): 2148.

[4]

Cetin K, Alex Z. n-type doping of oxides by hydrogen[J]. Appl Phys Lett, 2002, 81(1): 73.

[5]

Pontes F M, Pontes D S L, Leite E R. Influence of Ca concentration on the electric, morphological, and structural properties of (Pb,Ca)TiO3 thin films[J]. J Appl Phys, 2002, 91(10): 6650.

[6]

Van M N, Oanh L M, Van D P. Investigation of structural, optical and magnetic properties in PbTi1- xFexO3 ceramics[J]. Ceramics International, 2011, 37(8): 3785.

[7]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865.

[8]

Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B, 1996, 54(23): 16533.

[9]

Boonchun A, Smith M F, Cherdhirunkorn B. First principles study of Mn impurities in PbTiO3 and PbZrO3[J]. J Appl Phys, 2007, 101(4): 043521.

[10]

Nelmes R J, Kuhs W F. The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K[J]. Solid State Commun, 1985, 54(8): 721.

[11]

Kuroiwa Y, Aoyagi S, Sawada A. Evidence for Pb-O covalency in tetragonal PbTiO3[J]. Phys Rev Lett, 2001, 87(21): 217601.

[12]

Xu Chengyang, Yan Jinliang, Zhuang Huihui. Structural and electrical properties of Sn-doped Ga1.375In0.625O3 with different doping concentrations[J]. Physica B, 2014, 443-125.

[13]

Liu Z P, Gong X Q, Kohanoff J. Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au[J]. Phys Rev Lett, 2003, 91(26): 266102.

[14]

Hosseini S M, Movlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B: Condensed Matter, 2007, 391(2): 316.

[15]

Lv H Z, Gao H W, Yang Y. Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3[J]. App Catalysis A: General, 2011, 404(1): 54.

[16]

Pintilie L, Alexe M, Pintilie I. Thermally stimulated currents in PbTiO3 thin films[J]. Ferroelectrics, 1997, 201(1): 217.

[17]

Lange B, Freysoldt C, Neugebauer J. Native and hydrogen-containing point defects in Mg3N2: a density functional theory study[J]. Phys Re B, 2010, 81(22): 224109.

[18]

Zhang L Y, Yan J L, Zhang Y J. Effects of N-doping concentration on the electronic structure and optical properties of N-doped beta-Ga2O3[J]. Chinese Physics B, 2012, 21(6): 067102.

[19]

Morikawa T, Asahi R, Ohwaki T. Band-gap narrowing of titanium dioxide by nitrogen doping[J]. Jpn J Appl Phys, 2001, 40(6A).

[20]

Nolan M, Elliott S D. The p-type conduction mechanism in Cu2O: a first principles study[J]. Phys Chem Chem Phys, 2006, 8(45): 5350.

[21]

Lee J Y, Park J, Cho J H. Electronic properties of N- and C-doped TiO2[J]. Appl Phys Lett, 2005, 87(1): 011904.

[22]

Mahan G D. Energy gap in Si and Ge: impurity dependence[J]. J Appl Phys, 1980, 51(5): 2634.

[23]

Lu Jianguo, Ye Zhizhen, Wang Lei. Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD[J]. Materials Science in Semiconductor Processing, 2002, 5(6): 491.

[1]

Yinnü Zhao, Jinliang Yan, Chengyang Xu. First-principles study on electronic structure and conductivity of Sn-doped Ga1.375In0.625O3. J. Semicond., 2015, 36(1): 012003. doi: 10.1088/1674-4926/36/1/012003

[2]

Yinnü Zhao, Jinliang Yan. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides. J. Semicond., 2015, 36(8): 082004. doi: 10.1088/1674-4926/36/8/082004

[3]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[4]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[5]

Yinnü Zhao, Jinliang Yan. Effects of N concentration on electronic and optical properties of N-doped PbTiO3. J. Semicond., 2015, 36(9): 093005. doi: 10.1088/1674-4926/36/9/093005

[6]

Shujuan Jiao, Jinliang Yan, Guipeng Sun, Yinnü Zhao. Electronic structures and optical properties of Nb-doped SrTiO3 from first principles. J. Semicond., 2016, 37(7): 072001. doi: 10.1088/1674-4926/37/7/072001

[7]

Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003

[8]

Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

[9]

J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films. J. Semicond., 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002

[10]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[11]

Yao Zhaohui, Chen Tingjin, Xia Chaofeng, Yuan Hairong, Liu Zuming, Liao Hua, Wang Fan. Structural and Optical Properties of CdTe Thin Films on Glass Grown by Hot Wall Vacuum Deposition. J. Semicond., 2006, 27(7): 1236.

[12]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[13]

Wang Li, Pu Yong, Fang Wenqing, Mo Chunlan, Xiong Chuanbing, Jiang Fengyi. Effect of Surface-Covered Annealing on the Optical Properties of ZnO Films Grown by MOCVD. J. Semicond., 2003, 24(3): 409.

[14]

Yingce Yan, Qi Wang, Huifang Ma. First principles calculations of electronic and optical properties of GaN1-xBix alloys. J. Semicond., 2014, 35(12): 122002. doi: 10.1088/1674-4926/35/12/122002

[15]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[16]

Zuo Chunying, Wen Jing, Zhong Cheng. First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO. J. Semicond., 2012, 33(7): 072001. doi: 10.1088/1674-4926/33/7/072001

[17]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[18]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[19]

Mihir M. Vora, Aditya M. Vora. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond., 2012, 33(1): 012001. doi: 10.1088/1674-4926/33/1/012001

[20]

Li Jin, Yang Liny, Jian Jikang, Zou Hua, Sun Yanfei. Effects of Sn-doping on morphology and optical properties of CdTe polycrystalline films. J. Semicond., 2009, 30(11): 112003. doi: 10.1088/1674-4926/30/11/112003

Search

Advanced Search >>

GET CITATION

P J Niu, J L Yan, D L Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3[J]. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004.

Export: BibTex EndNote

Article Metrics

Article views: 1325 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 02 September 2014 Manuscript revised: Online: Published: 01 April 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误