P J Niu, J L Yan, D L Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3[J]. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004.
Abstract: By using spin-polarized density functional theory calculations, the electron density differences, band structures and density of states of p-type N-doped PbTiO3 have been studied. In addition, the oxygen vacancy in N-doped PbTiO3 is also discussed. After the nitrogen dopant is introduced into the crystal, the N-doped PbTiO3 system is spin-polarized, the spin-down valance bands move to a high energy level and the Fermi energy level moves to the top of the valance bands, finally the band gap is narrowed. In this process, the N-doped PbTiO3 shows typical p-type semiconductor characteristics. When an oxygen vacancy and N impurity coexist in PbTiO3, there is no spin-polarized phenomenon. The conduction bands move downward and the acceptors are found to be fully compensated. The calculation results are mostly consistent with the experimental data.
Key words: semiconductor doping, electric properties, optical band gaps, optical properties, lead titanate
Abstract: By using spin-polarized density functional theory calculations, the electron density differences, band structures and density of states of p-type N-doped PbTiO3 have been studied. In addition, the oxygen vacancy in N-doped PbTiO3 is also discussed. After the nitrogen dopant is introduced into the crystal, the N-doped PbTiO3 system is spin-polarized, the spin-down valance bands move to a high energy level and the Fermi energy level moves to the top of the valance bands, finally the band gap is narrowed. In this process, the N-doped PbTiO3 shows typical p-type semiconductor characteristics. When an oxygen vacancy and N impurity coexist in PbTiO3, there is no spin-polarized phenomenon. The conduction bands move downward and the acceptors are found to be fully compensated. The calculation results are mostly consistent with the experimental data.
Key words:
semiconductor doping, electric properties, optical band gaps, optical properties, lead titanate
References:
[1] |
Hosseini S M, Movlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B, 2007, 391(2): 316. |
[2] |
Piskunov S, Heifets E, Eglitis R I. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study[J]. Computational Materials Science, 2004, 29(2): 165. |
[3] |
Leite E R, Santos L P S, Carreno N L V. Photoluminescence of nanostructured PbTiO3 processed by high-energy mechanical milling[J]. Appl Phys Lett, 2001, 78(15): 2148. |
[4] |
Cetin K, Alex Z. n-type doping of oxides by hydrogen[J]. Appl Phys Lett, 2002, 81(1): 73. |
[5] |
Pontes F M, Pontes D S L, Leite E R. Influence of Ca concentration on the electric, morphological, and structural properties of (Pb,Ca)TiO3 thin films[J]. J Appl Phys, 2002, 91(10): 6650. |
[6] |
Van M N, Oanh L M, Van D P. Investigation of structural, optical and magnetic properties in PbTi1- xFexO3 ceramics[J]. Ceramics International, 2011, 37(8): 3785. |
[7] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. |
[8] |
Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B, 1996, 54(23): 16533. |
[9] |
Boonchun A, Smith M F, Cherdhirunkorn B. First principles study of Mn impurities in PbTiO3 and PbZrO3[J]. J Appl Phys, 2007, 101(4): 043521. |
[10] |
Nelmes R J, Kuhs W F. The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K[J]. Solid State Commun, 1985, 54(8): 721. |
[11] |
Kuroiwa Y, Aoyagi S, Sawada A. Evidence for Pb-O covalency in tetragonal PbTiO3[J]. Phys Rev Lett, 2001, 87(21): 217601. |
[12] |
Xu Chengyang, Yan Jinliang, Zhuang Huihui. Structural and electrical properties of Sn-doped Ga1.375In0.625O3 with different doping concentrations[J]. Physica B, 2014, 443-125. |
[13] |
Liu Z P, Gong X Q, Kohanoff J. Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au[J]. Phys Rev Lett, 2003, 91(26): 266102. |
[14] |
Hosseini S M, Movlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B: Condensed Matter, 2007, 391(2): 316. |
[15] |
Lv H Z, Gao H W, Yang Y. Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3[J]. App Catalysis A: General, 2011, 404(1): 54. |
[16] |
Pintilie L, Alexe M, Pintilie I. Thermally stimulated currents in PbTiO3 thin films[J]. Ferroelectrics, 1997, 201(1): 217. |
[17] |
Lange B, Freysoldt C, Neugebauer J. Native and hydrogen-containing point defects in Mg3N2: a density functional theory study[J]. Phys Re B, 2010, 81(22): 224109. |
[18] |
Zhang L Y, Yan J L, Zhang Y J. Effects of N-doping concentration on the electronic structure and optical properties of N-doped beta-Ga2O3[J]. Chinese Physics B, 2012, 21(6): 067102. |
[19] |
Morikawa T, Asahi R, Ohwaki T. Band-gap narrowing of titanium dioxide by nitrogen doping[J]. Jpn J Appl Phys, 2001, 40(6A). |
[20] |
Nolan M, Elliott S D. The p-type conduction mechanism in Cu2O: a first principles study[J]. Phys Chem Chem Phys, 2006, 8(45): 5350. |
[21] |
Lee J Y, Park J, Cho J H. Electronic properties of N- and C-doped TiO2[J]. Appl Phys Lett, 2005, 87(1): 011904. |
[22] |
Mahan G D. Energy gap in Si and Ge: impurity dependence[J]. J Appl Phys, 1980, 51(5): 2634. |
[23] |
Lu Jianguo, Ye Zhizhen, Wang Lei. Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD[J]. Materials Science in Semiconductor Processing, 2002, 5(6): 491. |
[1] |
Hosseini S M, Movlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B, 2007, 391(2): 316. |
[2] |
Piskunov S, Heifets E, Eglitis R I. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study[J]. Computational Materials Science, 2004, 29(2): 165. |
[3] |
Leite E R, Santos L P S, Carreno N L V. Photoluminescence of nanostructured PbTiO3 processed by high-energy mechanical milling[J]. Appl Phys Lett, 2001, 78(15): 2148. |
[4] |
Cetin K, Alex Z. n-type doping of oxides by hydrogen[J]. Appl Phys Lett, 2002, 81(1): 73. |
[5] |
Pontes F M, Pontes D S L, Leite E R. Influence of Ca concentration on the electric, morphological, and structural properties of (Pb,Ca)TiO3 thin films[J]. J Appl Phys, 2002, 91(10): 6650. |
[6] |
Van M N, Oanh L M, Van D P. Investigation of structural, optical and magnetic properties in PbTi1- xFexO3 ceramics[J]. Ceramics International, 2011, 37(8): 3785. |
[7] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. |
[8] |
Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys Rev B, 1996, 54(23): 16533. |
[9] |
Boonchun A, Smith M F, Cherdhirunkorn B. First principles study of Mn impurities in PbTiO3 and PbZrO3[J]. J Appl Phys, 2007, 101(4): 043521. |
[10] |
Nelmes R J, Kuhs W F. The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K[J]. Solid State Commun, 1985, 54(8): 721. |
[11] |
Kuroiwa Y, Aoyagi S, Sawada A. Evidence for Pb-O covalency in tetragonal PbTiO3[J]. Phys Rev Lett, 2001, 87(21): 217601. |
[12] |
Xu Chengyang, Yan Jinliang, Zhuang Huihui. Structural and electrical properties of Sn-doped Ga1.375In0.625O3 with different doping concentrations[J]. Physica B, 2014, 443-125. |
[13] |
Liu Z P, Gong X Q, Kohanoff J. Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au[J]. Phys Rev Lett, 2003, 91(26): 266102. |
[14] |
Hosseini S M, Movlarooy T, Kompany A. First-principle calculations of the cohesive energy and the electronic properties of PbTiO3[J]. Physica B: Condensed Matter, 2007, 391(2): 316. |
[15] |
Lv H Z, Gao H W, Yang Y. Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3[J]. App Catalysis A: General, 2011, 404(1): 54. |
[16] |
Pintilie L, Alexe M, Pintilie I. Thermally stimulated currents in PbTiO3 thin films[J]. Ferroelectrics, 1997, 201(1): 217. |
[17] |
Lange B, Freysoldt C, Neugebauer J. Native and hydrogen-containing point defects in Mg3N2: a density functional theory study[J]. Phys Re B, 2010, 81(22): 224109. |
[18] |
Zhang L Y, Yan J L, Zhang Y J. Effects of N-doping concentration on the electronic structure and optical properties of N-doped beta-Ga2O3[J]. Chinese Physics B, 2012, 21(6): 067102. |
[19] |
Morikawa T, Asahi R, Ohwaki T. Band-gap narrowing of titanium dioxide by nitrogen doping[J]. Jpn J Appl Phys, 2001, 40(6A). |
[20] |
Nolan M, Elliott S D. The p-type conduction mechanism in Cu2O: a first principles study[J]. Phys Chem Chem Phys, 2006, 8(45): 5350. |
[21] |
Lee J Y, Park J, Cho J H. Electronic properties of N- and C-doped TiO2[J]. Appl Phys Lett, 2005, 87(1): 011904. |
[22] |
Mahan G D. Energy gap in Si and Ge: impurity dependence[J]. J Appl Phys, 1980, 51(5): 2634. |
[23] |
Lu Jianguo, Ye Zhizhen, Wang Lei. Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD[J]. Materials Science in Semiconductor Processing, 2002, 5(6): 491. |
P J Niu, J L Yan, D L Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3[J]. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004.
Article views: 1325 Times PDF downloads: 10 Times Cited by: 0 Times
Manuscript received: 02 September 2014 Manuscript revised: Online: Published: 01 April 2015
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2