J. Semicond. > Volume 36 > Issue 4 > Article Number: 044002

Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

Paragjyoti Gogoi , Rajib Saikia and Sanjib Changmai

+ Author Affilications + Find other works by these authors

PDF

Abstract: ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 ℃ for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

Key words: chemical bath depositionthin film transistorselectrical properties

Abstract: ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 ℃ for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

Key words: chemical bath depositionthin film transistorselectrical properties



References:

[1]

Nayak P K, Jang J, Lee C. Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors[J]. Appl Phys Lett, 2009, 95(7): 193503.

[2]

Tsay C Y, Fan K S. Optimization of Zr-doped ZnO thin films prepared by sol-gel method[J]. Mater Trans, 2008, 49(8): 1900.

[3]

Moon Y K, Lee S, Park J W. Characteristics of ZnO-based TFT using La2O3 high-k dielectrics[J]. Journal of the Korean Physical Society, 2009, 55(5): 1906.

[4]

You H C, Lin Y H. Investigation of the sol-gel method on the flexible ZnO device[J]. International Journal of Electrochemical Society, 2012, 7: 9085.

[5]

Shekar B C, Lee J, Rhee S W. Organic thin film transistors: materials, processes and devices[J]. Korean Journal of Chemical Engineering, 2004, 21(1): 267.

[6]

Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Appl Phys Lett, 2003, 82: 733.

[7]

Chang S, Song Y W, Lee S. Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure[J]. Appl Phys Lett, 2008, 92: 192104.

[8]

Nishii J, Hossain F M, Takagi S. High mobility thin film transistors with transparent ZnO channels[J]. Jpn J Appl Phys, 2003, 42.

[9]

Zhang X H, Domercq B, Wang X D. High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD)[J]. Org Electron, 2007, 8(6): 718.

[10]

Chang M F, Lee P T, McAlister S P. Small-subthreshold-swing and low-voltage flexible organic thin-film transistors which use HfLaO as the gate dielectric[J]. IEEE Electron Device Lett, 2009, 30(2): 133.

[11]

Avis C, Jang J. High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol-gel method[J]. J Mater Chem, 2011, 21: 10649.

[12]

Lee J, Kim J H, Seongil I. Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass[J]. Appl Phys Lett, 2003, 83(13): 2689.

[13]

Oh M S, Lee K, Song J H. Improving the gate stability of ZnO thin-film transistors with aluminum oxide dielectric layers[J]. International Journal of Electrochemical Society, 2008, 155(12).

[14]

Chu J B, Huang S M, Zhang D W. Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications[J]. Appl Phys A, 2009, 95(3): 849.

[15]

Hodes G. Chemical solution deposition of semiconductor films[J]. New York: Marcel Dekker, 2003.

[16]

Samuel Tolansky, Surface micro topography. Samuel Tolansky, Surface micro topography[J]. London: Longranans, 1960.

[17]

Shekar B C, Lee J, Rhee S W. Organic thin film transistors: materials, processes and devices[J]. Korean Journal Chemical Engineering, 2004, 21(1): 267.

[18]

Seo J H, Kwon J H, Shin S I. Organic thin film transistors with polyvinyl alcohol treated dielectric surface[J]. Semicond Sci Technol, 2007, 22(9): 1039.

[19]

Nayak P K, Kim J, Lee C. Performance of top-gate thin film transistors with solution processed ZnO channel layer and PVP gate dielectric[J]. Physica Status Solidi A, 2010, 207(7): 1664.

[20]

Vanheusden K, Warren W L, Seager C H. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. J Appl Phys, 1996, 79(10): 7983.

[21]

Lin B, Fu Z, Jia Y. Erratum: green luminescent center in undoped zinc oxide films deposited on silicon substrates[J]. Appl Phys Lett, 2001, 79: 943.

[1]

Nayak P K, Jang J, Lee C. Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors[J]. Appl Phys Lett, 2009, 95(7): 193503.

[2]

Tsay C Y, Fan K S. Optimization of Zr-doped ZnO thin films prepared by sol-gel method[J]. Mater Trans, 2008, 49(8): 1900.

[3]

Moon Y K, Lee S, Park J W. Characteristics of ZnO-based TFT using La2O3 high-k dielectrics[J]. Journal of the Korean Physical Society, 2009, 55(5): 1906.

[4]

You H C, Lin Y H. Investigation of the sol-gel method on the flexible ZnO device[J]. International Journal of Electrochemical Society, 2012, 7: 9085.

[5]

Shekar B C, Lee J, Rhee S W. Organic thin film transistors: materials, processes and devices[J]. Korean Journal of Chemical Engineering, 2004, 21(1): 267.

[6]

Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Appl Phys Lett, 2003, 82: 733.

[7]

Chang S, Song Y W, Lee S. Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure[J]. Appl Phys Lett, 2008, 92: 192104.

[8]

Nishii J, Hossain F M, Takagi S. High mobility thin film transistors with transparent ZnO channels[J]. Jpn J Appl Phys, 2003, 42.

[9]

Zhang X H, Domercq B, Wang X D. High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD)[J]. Org Electron, 2007, 8(6): 718.

[10]

Chang M F, Lee P T, McAlister S P. Small-subthreshold-swing and low-voltage flexible organic thin-film transistors which use HfLaO as the gate dielectric[J]. IEEE Electron Device Lett, 2009, 30(2): 133.

[11]

Avis C, Jang J. High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol-gel method[J]. J Mater Chem, 2011, 21: 10649.

[12]

Lee J, Kim J H, Seongil I. Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass[J]. Appl Phys Lett, 2003, 83(13): 2689.

[13]

Oh M S, Lee K, Song J H. Improving the gate stability of ZnO thin-film transistors with aluminum oxide dielectric layers[J]. International Journal of Electrochemical Society, 2008, 155(12).

[14]

Chu J B, Huang S M, Zhang D W. Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications[J]. Appl Phys A, 2009, 95(3): 849.

[15]

Hodes G. Chemical solution deposition of semiconductor films[J]. New York: Marcel Dekker, 2003.

[16]

Samuel Tolansky, Surface micro topography. Samuel Tolansky, Surface micro topography[J]. London: Longranans, 1960.

[17]

Shekar B C, Lee J, Rhee S W. Organic thin film transistors: materials, processes and devices[J]. Korean Journal Chemical Engineering, 2004, 21(1): 267.

[18]

Seo J H, Kwon J H, Shin S I. Organic thin film transistors with polyvinyl alcohol treated dielectric surface[J]. Semicond Sci Technol, 2007, 22(9): 1039.

[19]

Nayak P K, Kim J, Lee C. Performance of top-gate thin film transistors with solution processed ZnO channel layer and PVP gate dielectric[J]. Physica Status Solidi A, 2010, 207(7): 1664.

[20]

Vanheusden K, Warren W L, Seager C H. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. J Appl Phys, 1996, 79(10): 7983.

[21]

Lin B, Fu Z, Jia Y. Erratum: green luminescent center in undoped zinc oxide films deposited on silicon substrates[J]. Appl Phys Lett, 2001, 79: 943.

[1]

Sunil H. Chaki, Mahesh D. Chaudhary, M. P. Deshpande. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques. J. Semicond., 2016, 37(5): 053001. doi: 10.1088/1674-4926/37/5/053001

[2]

Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003

[3]

Liu Qi, Mao Guobing, Ao Jianping. Properties and Applications of ZnS Buffer Layers for Cu(In,Ga)Se2 Thin Film Solar Cells. J. Semicond., 2007, 28(5): 726.

[4]

Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors. J. Semicond., 2019, 40(4): 042801. doi: 10.1088/1674-4926/40/4/042801

[5]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[6]

Yongye Liang, Kyungsoo Jang, S. Velumani, Cam Phu Thi Nguyen, Junsin Yi. Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor. J. Semicond., 2015, 36(2): 024007. doi: 10.1088/1674-4926/36/2/024007

[7]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[8]

P Mallika Bramaramba Devi, G. Phaneendra Reddy, K. T. Ramakrishna Reddy. Structural and optical studies on PVA capped SnS films grown by chemical bath deposition for solar cell application. J. Semicond., 2019, 40(5): 052101. doi: 10.1088/1674-4926/40/5/052101

[9]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[10]

Zhefeng Li, Xianye Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors. J. Semicond., 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004

[11]

Zhu Xiaming, Wu Huizhen, Wang Shuangjiang, Zhang Yingying, Cai Chunfeng, Si Jianxiao, Yuan Zijian, Du Xiaoyang, Dong Shurong. Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors. J. Semicond., 2009, 30(3): 033001. doi: 10.1088/1674-4926/30/3/033001

[12]

Chao Xiong, Jin Xiao, Lei Chen, Wenhan Du, Weilong Xu, Dongdong Hou. Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer. J. Semicond., 2018, 39(12): 124013. doi: 10.1088/1674-4926/39/12/124013

[13]

Pengfei Wang, Ruihua Nan, Zengyun Jian. The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals. J. Semicond., 2017, 38(6): 062002. doi: 10.1088/1674-4926/38/6/062002

[14]

G. Nagaraju, K. Ravindranatha Reddy, V. Rajagopal Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. J. Semicond., 2017, 38(11): 114001. doi: 10.1088/1674-4926/38/11/114001

[15]

Xia Jilin, Liu Bo, Song Zhitang, Feng Songlin. Influence of Deposition Parameters on Electrical Propertiesof Ge2Sb2Te5 Thin Films. J. Semicond., 2006, 27(S1): 155.

[16]

Jiaming Luo, Min Guan, Yang Zhang, Liqiang Chen, Yiping Zeng. The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors. J. Semicond., 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007

[17]

Rahul Kumar, Parag Bhargava, Ritu Srivastava, Priyanka Tyagi. Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3. J. Semicond., 2015, 36(6): 064001. doi: 10.1088/1674-4926/36/6/064001

[18]

Mihir M. Vora, Aditya M. Vora. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond., 2012, 33(1): 012001. doi: 10.1088/1674-4926/33/1/012001

[19]

A. R. Babar, S. S. Shinde, A.V. Moholkar, C. H. Bhosale, J. H. Kim, K. Y. Rajpure. Physical properties of sprayed antimony doped tin oxide thin films: Role of thickness. J. Semicond., 2011, 32(5): 053001. doi: 10.1088/1674-4926/32/5/053001

[20]

Rahul Kumar, Ritu Srivastava, Punita Singh. Synthesis and electroluminescence characterization of a new aluminum complex,[8-hydroxyquinoline] bis[2, 2'bipyridine] aluminum Al(Bpy)2q. J. Semicond., 2016, 37(1): 013001. doi: 10.1088/1674-4926/37/1/013001

Search

Advanced Search >>

GET CITATION

P Gogoi, R Saikia, S Changmai. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique[J]. J. Semicond., 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002.

Export: BibTex EndNote

Article Metrics

Article views: 595 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 14 August 2014 Manuscript revised: Online: Published: 01 April 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误