J. Semicond. > Volume 36 > Issue 4 > Article Number: 044010

Simulation of a high-efficiency silicon-based heterojunction solar cell

Jian Liu , Shihua Huang , and Lü He

+ Author Affilications + Find other works by these authors

PDF

Abstract: The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC: 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing.

Key words: simulationheterojunction solar cellstransport properties

Abstract: The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC: 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing.

Key words: simulationheterojunction solar cellstransport properties



References:

[1]

Yano A, Tohoda S, Matsuyama K. 24.7% record efficiency HIT solar cell on thin silicon wafer[J]. 28th EU PVSEC, Paris, 2013.

[2]

Arturo M A, Norberto H C, Gaspar C C. Modeling solar cells: a method for improving their efficiency[J]. Mater Sci Eng B, 2012, 177: 1430.

[3]

Dwivedi N, Kumar S, Bisht A. Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ~ 27% efficiency[J]. Sol Energy, 2013, 88: 31.

[4]

Wang L S, Chen F X, Ai Y. Simulation of high efficiency heterojunction solar cells with AFORS-HET[J]. J Phys, 2011, 276: 012177.

[5]

Liu Q, Ye X J, Liu C. Performance of bifacial HIT solar cells on n-type silicon substrates[J]. Optoelectron Lett, 2010, 6: 108.

[6]

Wen X X, Zeng X B, Liao W G. An approach for improving the carriers transport properties of a-Si:H/c-Si heterojunction solar cells with efficiency of more than 27%[J]. Sol Energy, 2013, 96: 168.

[7]

Wang J Q, Gao H, Zhang J. Investigation of an a-Si/c-Si interface on a c-Si (P) substrate by simulation[J]. Journal of Semiconductors, 2012, 33: 033001.

[8]

Zhong S H, Hua X, Shen W Z. Simulation of high-efficiency crystalline silicon solar cells with homo-hetero junctions[J]. IEEE Trans Electron Devices, 2013, 60: 2104.

[9]

Zhao L, Zhou C L, Li H L. Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation[J]. Sol Energy Mat Sol C, 2008, 92: 673.

[10]

Dao V A, Heo J, Choi H. Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell[J]. Sol Energy, 2010, 84: 777.

[11]

Hernández-Como N, Morales-Acevedo A. Simulation of hetero-junction silicon solar cells with AMPS-1D[J]. Sol Energy Mat Sol C, 2010, 94: 62.

[12]

Zhao L, Zhou C L, Li H L. Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation[J]. Phys Status Solidi A, 2008, 205: 1215.

[13]

Uchida T, Mimura T, Ohtsuka M. Cesium-incorporated indium-tin-oxide films for use as a cathode with low work function for a transparent organic light-emitting device[J]. Thin Solid Films, 2006, 496: 75.

[1]

Yano A, Tohoda S, Matsuyama K. 24.7% record efficiency HIT solar cell on thin silicon wafer[J]. 28th EU PVSEC, Paris, 2013.

[2]

Arturo M A, Norberto H C, Gaspar C C. Modeling solar cells: a method for improving their efficiency[J]. Mater Sci Eng B, 2012, 177: 1430.

[3]

Dwivedi N, Kumar S, Bisht A. Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ~ 27% efficiency[J]. Sol Energy, 2013, 88: 31.

[4]

Wang L S, Chen F X, Ai Y. Simulation of high efficiency heterojunction solar cells with AFORS-HET[J]. J Phys, 2011, 276: 012177.

[5]

Liu Q, Ye X J, Liu C. Performance of bifacial HIT solar cells on n-type silicon substrates[J]. Optoelectron Lett, 2010, 6: 108.

[6]

Wen X X, Zeng X B, Liao W G. An approach for improving the carriers transport properties of a-Si:H/c-Si heterojunction solar cells with efficiency of more than 27%[J]. Sol Energy, 2013, 96: 168.

[7]

Wang J Q, Gao H, Zhang J. Investigation of an a-Si/c-Si interface on a c-Si (P) substrate by simulation[J]. Journal of Semiconductors, 2012, 33: 033001.

[8]

Zhong S H, Hua X, Shen W Z. Simulation of high-efficiency crystalline silicon solar cells with homo-hetero junctions[J]. IEEE Trans Electron Devices, 2013, 60: 2104.

[9]

Zhao L, Zhou C L, Li H L. Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation[J]. Sol Energy Mat Sol C, 2008, 92: 673.

[10]

Dao V A, Heo J, Choi H. Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell[J]. Sol Energy, 2010, 84: 777.

[11]

Hernández-Como N, Morales-Acevedo A. Simulation of hetero-junction silicon solar cells with AMPS-1D[J]. Sol Energy Mat Sol C, 2010, 94: 62.

[12]

Zhao L, Zhou C L, Li H L. Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation[J]. Phys Status Solidi A, 2008, 205: 1215.

[13]

Uchida T, Mimura T, Ohtsuka M. Cesium-incorporated indium-tin-oxide films for use as a cathode with low work function for a transparent organic light-emitting device[J]. Thin Solid Films, 2006, 496: 75.

[1]

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

[2]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[3]

Tadatsugu Minami, Yuki Nishi, Toshihiro Miyata. Cu2O-based solar cells using oxide semiconductors. J. Semicond., 2016, 37(1): 014002. doi: 10.1088/1674-4926/37/1/014002

[4]

M Errai, A El Kaaouachi, H El Idrissi. Electrical properties of Ge:Ga near the metal-insulator transition. J. Semicond., 2015, 36(6): 062001. doi: 10.1088/1674-4926/36/6/062001

[5]

Tianyue Wang, Jiewei Chen, Gaoxiang Wu, Dandan Song, Meicheng Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005

[6]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[7]

Liu Hongxia, Zhang Heming, Zhang Zhiyong. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction. J. Semicond., 2009, 30(5): 052002. doi: 10.1088/1674-4926/30/5/052002

[8]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[9]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[10]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[11]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[12]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[13]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[14]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[15]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[16]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[17]

Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005

[18]

Changyong Zheng, Wei Zhang, Tailong Xu, Yuehua Dai, Junning Chen. A compact model for single material double work function gate MOSFET. J. Semicond., 2013, 34(9): 094006. doi: 10.1088/1674-4926/34/9/094006

[19]

Jiang Shouzhen, Xu Xian'gang, Li Juan, Chen Xiufang, Wang Yingmin, Ning Li'na, Hu Xiaobo, Wang Jiyang, Jiang Minhua. Recent Progress in SiC Monocrystal Growth and Wafer Machining. J. Semicond., 2007, 28(5): 810.

[20]

Liu Xueqiang, Zhang Tong, Wang Lijie, Xia Zhiqiang, Li Mingyou, Liu Shiyong. A Testing Method on a Thin Film Transistor Array for Active Matrix Organic Emitting Diode. J. Semicond., 2007, 28(7): 1161.

Search

Advanced Search >>

GET CITATION

J Liu, S H Huang, L He. Simulation of a high-efficiency silicon-based heterojunction solar cell[J]. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010.

Export: BibTex EndNote

Article Metrics

Article views: 647 Times PDF downloads: 20 Times Cited by: 0 Times

History

Manuscript received: 17 September 2014 Manuscript revised: Online: Published: 01 April 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误