J. Semicond. > Volume 36 > Issue 7 > Article Number: 074010

Frequency stability of an RF oscillator with an MEMS-based encapsulated resonator

Bohua Peng 1, 2, , Wei Luo 1, 2, , Jicong Zhao 1, 2, , Quan Yuan 1, 2, , Jinling Yang 1, 2, , and Fuhua Yang 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper presents a high-Q RF MEMS oscillator consisting of a micro-disk resonator and low noise feedback circuits. The oscillator has high frequency stability and low phase noise. The two-port resonator was hermetically encapsulated using low-cost Sn-rich Au-Sn solder bonding, which significantly improves the frequency stability. A low noise oscillator circuit was designed with a two-stage amplifying architecture which effectively improves both the frequency stability and phase noise performance. The measured phase noise is -96 dBc/Hz at 1 kHz offset and -128 dBc/Hz at far-from-carrier offsets. Moreover, the medium-term frequency stability and Allan deviation of the oscillator are ± 4 ppm and 10 ppb, respectively. The oscillator is a promising component in future wireless communication application.

Key words: MEMSdisk resonatoroscillatorphase noisefrequency stabilityencapsulation

Abstract: This paper presents a high-Q RF MEMS oscillator consisting of a micro-disk resonator and low noise feedback circuits. The oscillator has high frequency stability and low phase noise. The two-port resonator was hermetically encapsulated using low-cost Sn-rich Au-Sn solder bonding, which significantly improves the frequency stability. A low noise oscillator circuit was designed with a two-stage amplifying architecture which effectively improves both the frequency stability and phase noise performance. The measured phase noise is -96 dBc/Hz at 1 kHz offset and -128 dBc/Hz at far-from-carrier offsets. Moreover, the medium-term frequency stability and Allan deviation of the oscillator are ± 4 ppm and 10 ppb, respectively. The oscillator is a promising component in future wireless communication application.

Key words: MEMSdisk resonatoroscillatorphase noisefrequency stabilityencapsulation



References:

[1]

Li H, Xu Y P, Palaniapan M. A CMOS readout circuit for SOI resonant accelerometer with 4-μg bias stability and 20-μg/Hz1/2 resolution[J]. IEEE J Solid-State Circuits, 2008, 43(6): 1480.

[2]

Lin Y W, Lee S, Ren Z. Series-resonant micromechanical resonator oscillator[J]. Tech Dig IEEE Int Electron Devices Meeting, IEDM, 2003: 0339.

[3]

Lin Y W, Lee S, Li S S. 60-MHz wine-glass micromechanical-disk reference oscillator[J]. IEEE Int Solid-State Circuits Conf, 2004: 1322.

[4]

Xie J, Liu Y F, Zhao H. Reliable low-cost fabrication and characterization methods for micromechanical disk resonators[J]. 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011: 2462.

[5]

Rocheleau T O, Naing T L, Nguyen C T C. Long-term stability of a hermetically packaged MEMS disk oscillator[J]. IEEE Joint Int Freq Control Symp, 2013: 209.

[6]

Fang Zhiqiang, Miao Xu, Yang Jinling. Low temperature Sn-rich Au-Sn wafer-level bonding[J]. Journal of Semiconductors, 2013, 34(10): 106001.

[7]

Akgul M, Kim B, Hung L W. Oscillator far-from-carrier phase noise reduction via nano-scale gap tuning of micromechanical resonators[J]. International Solid-State Sensors, Actuators and Microsystems Conference, 2009: 798.

[8]

Lee S, Nguyen C T C. Influence of automatic level control on micromechanical resonator oscillator phase noise[J]. Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003: 341.

[9]

Lee H K, Melamud R, Kim B. The effect of the temperature-dependent nonlinearities on the temperature stability of micromechanical resonators[J]. J Appl Phys, 2013, 114(15): 153513.

[10]

Van Beek J T M, Puers R. A review of MEMS oscillators for frequency reference and timing applications[J]. J Micromech Microeng, 2012, 22: 013001.

[11]

Leeson D B. A simple model of feedback oscillator noise spectrum[J]. Proc IEEE, 1965.

[12]

Wang J, Ren Z, Nguyen C T C. 1.156-GHz self-aligned vibrating micromechanical disk resonator[J]. IEEE Trans Ultrasonics, Ferroelectrics and Frequency Control, 2004, 51(12): 1607-1628.

[13]

Kaajakari V, Koskinen J K, Mattila T. Phase noise in capacitively coupled micromechanical oscillators[J]. IEEE Trans Ultrasonics, Ferroelectrics and Frequency Control, 2005, 52(12): 2322.

[14]

Antonio D, Zanette D, Lopez D. Frequency stabilization in nonlinear micromechanical oscillators[J]. Nature Commun, 2012, 3: 806.

[15]

Lee H, Partridge A, Assaderaghi F. Low jitter and temperature stable MEMS oscillators[J]. IEEE International Frequency Control Symposium (FCS), 2012: 1.

[16]

Kim B, Candler R N, Hopcroft M. Frequency stability of wafer-scale encapsulated MEMS resonators[J]. Tech Dig, Int Conf Solid-State Sensors, Actuators, Microsyst (Transducers'05), Seoul, Korea, 2005: 1965.

[1]

Li H, Xu Y P, Palaniapan M. A CMOS readout circuit for SOI resonant accelerometer with 4-μg bias stability and 20-μg/Hz1/2 resolution[J]. IEEE J Solid-State Circuits, 2008, 43(6): 1480.

[2]

Lin Y W, Lee S, Ren Z. Series-resonant micromechanical resonator oscillator[J]. Tech Dig IEEE Int Electron Devices Meeting, IEDM, 2003: 0339.

[3]

Lin Y W, Lee S, Li S S. 60-MHz wine-glass micromechanical-disk reference oscillator[J]. IEEE Int Solid-State Circuits Conf, 2004: 1322.

[4]

Xie J, Liu Y F, Zhao H. Reliable low-cost fabrication and characterization methods for micromechanical disk resonators[J]. 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011: 2462.

[5]

Rocheleau T O, Naing T L, Nguyen C T C. Long-term stability of a hermetically packaged MEMS disk oscillator[J]. IEEE Joint Int Freq Control Symp, 2013: 209.

[6]

Fang Zhiqiang, Miao Xu, Yang Jinling. Low temperature Sn-rich Au-Sn wafer-level bonding[J]. Journal of Semiconductors, 2013, 34(10): 106001.

[7]

Akgul M, Kim B, Hung L W. Oscillator far-from-carrier phase noise reduction via nano-scale gap tuning of micromechanical resonators[J]. International Solid-State Sensors, Actuators and Microsystems Conference, 2009: 798.

[8]

Lee S, Nguyen C T C. Influence of automatic level control on micromechanical resonator oscillator phase noise[J]. Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003: 341.

[9]

Lee H K, Melamud R, Kim B. The effect of the temperature-dependent nonlinearities on the temperature stability of micromechanical resonators[J]. J Appl Phys, 2013, 114(15): 153513.

[10]

Van Beek J T M, Puers R. A review of MEMS oscillators for frequency reference and timing applications[J]. J Micromech Microeng, 2012, 22: 013001.

[11]

Leeson D B. A simple model of feedback oscillator noise spectrum[J]. Proc IEEE, 1965.

[12]

Wang J, Ren Z, Nguyen C T C. 1.156-GHz self-aligned vibrating micromechanical disk resonator[J]. IEEE Trans Ultrasonics, Ferroelectrics and Frequency Control, 2004, 51(12): 1607-1628.

[13]

Kaajakari V, Koskinen J K, Mattila T. Phase noise in capacitively coupled micromechanical oscillators[J]. IEEE Trans Ultrasonics, Ferroelectrics and Frequency Control, 2005, 52(12): 2322.

[14]

Antonio D, Zanette D, Lopez D. Frequency stabilization in nonlinear micromechanical oscillators[J]. Nature Commun, 2012, 3: 806.

[15]

Lee H, Partridge A, Assaderaghi F. Low jitter and temperature stable MEMS oscillators[J]. IEEE International Frequency Control Symposium (FCS), 2012: 1.

[16]

Kim B, Candler R N, Hopcroft M. Frequency stability of wafer-scale encapsulated MEMS resonators[J]. Tech Dig, Int Conf Solid-State Sensors, Actuators, Microsyst (Transducers'05), Seoul, Korea, 2005: 1965.

[1]

Li Li, Zhao Zhengping, Zhang Zhiguo, Guo Wensheng, Lü Miao, Yang Ruixia. Voltage Controlled Oscillator. J. Semicond., 2006, 27(5): 900.

[2]

M. Bouhouche, S. Latreche, C. Gontrand. Phase noise modeling in LC oscillators implemented in SiGe technology. J. Semicond., 2013, 34(2): 025001. doi: 10.1088/1674-4926/34/2/025001

[3]

Fengxiang Wang, Quan Yuan, Xiao Kan, Jicong Zhao, Zeji Chen, Jinling Yang, Fuhua Yang. Reliability testing of a 3D encapsulated VHF MEMS resonator. J. Semicond., 2018, 39(10): 104008. doi: 10.1088/1674-4926/39/10/104008

[4]

Zhao Yan, Wang Zhigong, Li Wei, Zhang Li. Design and measurement of a 53 GHz balanced Colpitts oscillator. J. Semicond., 2009, 30(1): 015003. doi: 10.1088/1674-4926/30/1/015003

[5]

Wang Xiantai, Jin Zhi, Wu Danyu, Shen Huajun, Liu Xinyu. A 10 GHz high-effciency and low phase-noise negative-resistance oscillator optimized with a virtual loop model. J. Semicond., 2009, 30(11): 115001. doi: 10.1088/1674-4926/30/11/115001

[6]

Sen Li, Jinguang Jiang, Xifeng Zhou, Jianghua Liu. A low phase noise and low spur PLL frequency synthesizer for GNSS receivers. J. Semicond., 2014, 35(1): 015004. doi: 10.1088/1674-4926/35/1/015004

[7]

Chen Zuotian, Wu Xuan, Tang Shoulong, Wu Jianhui. CMOS Implementation of a Wideband Low Phase Noise PLL Frequency Synthesizer. J. Semicond., 2006, 27(10): 1838.

[8]

Jiao Yishu, Zhou Yumei, Jiang Jianhua, Wu Bin. A 0.5–1.7 GHz low phase noise ring-oscillator-based PLL for mixed-signal SoCs. J. Semicond., 2010, 31(9): 095002. doi: 10.1088/1674-4926/31/9/095002

[9]

Gao Haijun, Sun Lingling, Kuang Xiaofei, Lou Liheng. A low-phase-noise ring oscillator with coarse and fine tuning in a standard CMOS process. J. Semicond., 2012, 33(7): 075004. doi: 10.1088/1674-4926/33/7/075004

[10]

Zhao Wei, Lu Lei, Tang Zhangwen. A low-phase-noise digitally controlled crystal oscillator for DVB TV tuners. J. Semicond., 2010, 31(7): 075003. doi: 10.1088/1674-4926/31/7/075003

[11]

Hao Yilong, Xu Jiajia, Zhang Guobing, Wu Guoying, Yan Guizhen. Design of a Silicon Beam Resonator for a Novel Gas Sensor. J. Semicond., 2006, 27(4): 658.

[12]

Zhang Jun, Liao Xiaoping, Jiao Yongchang. Microwave frequency detector at X-band using GaAs MMIC technology. J. Semicond., 2009, 30(4): 044009. doi: 10.1088/1674-4926/30/4/044009

[13]

Li Zhenrong, Zhuang Yiqi, Li Bing, Jin Gang. A 9.8-mW 1.2-GHz CMOS frequency synthesizer with a low phase-noise LC-VCO and an I/Q frequency divider. J. Semicond., 2011, 32(7): 075008. doi: 10.1088/1674-4926/32/7/075008

[14]

Wang Shaohua, Yu Guangming, Liu Yongpan, Yang Huazhong. A Low Noise,Low Power Fully Digitally Controlled LC Oscillator for PHS Transceivers. J. Semicond., 2007, 28(11): 1836.

[15]

Ou Yi, Shi Shali, Li Chaobo, Jiao Binbin, Chen Dapeng. Wet Etching and Releasing of MEMS. J. Semicond., 2006, 27(S1): 347.

[16]

Shi Hao, Liu Junhua, Zhang Guoyan, Liao Huailin, Huang Ru, Wang Yuangyuan. A Novel Method to Compensate the Sigma-Delta Shaped Noise for Wide Band Fractional-N Frequency Synthesizers. J. Semicond., 2006, 27(4): 646.

[17]

Xu Yinglin, Liao Xiaoping. Design and fabrication of a terminating type MEMS microwave power sensor. J. Semicond., 2009, 30(4): 044010. doi: 10.1088/1674-4926/30/4/044010

[18]

Xu Yinglin, Liao Xiaoping. Thermal time constant of a terminating type MEMS microwave power sensor. J. Semicond., 2009, 30(10): 104006. doi: 10.1088/1674-4926/30/10/104006

[19]

Du Guangtao, Chen Xiangdong, Lin Qibin, Li Hui, Guo Huihui. MEMS magnetic field sensor based on silicon bridge structure. J. Semicond., 2010, 31(10): 104011. doi: 10.1088/1674-4926/31/10/104011

[20]

Liu Mengwei, Li Junhong, Ma Jun, Wang Chenghao. Design and fabrication of a MEMS Lamb wave device based on ZnO thin film. J. Semicond., 2011, 32(4): 044006. doi: 10.1088/1674-4926/32/4/044006

Search

Advanced Search >>

GET CITATION

B H Peng, W Luo, J C Zhao, Q Yuan, J L Yang, F H Yang. Frequency stability of an RF oscillator with an MEMS-based encapsulated resonator[J]. J. Semicond., 2015, 36(7): 074010. doi: 10.1088/1674-4926/36/7/074010.

Export: BibTex EndNote

Article Metrics

Article views: 856 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 24 December 2014 Manuscript revised: Online: Published: 01 July 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误