J. Semicond. > Volume 36 > Issue 8 > Article Number: 083006

RuO2/MnO2 composite materials for high-performance supercapacitor electrodes

Jianming Lei and Xiaomei Chen ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Ruthenium oxide and manganese oxide nanomaterials were respectively prepared by a sol-gel process and hydrothermal synthesis method. The morphologies and microstructures of the composite nanomaterials were characterized by SEM and XRD. Based on the cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge-discharge techniques, the performances of the electrodes were investigated. The results show that the composite of manganese oxide and ruthenium oxide is beneficial to improve the impedance characteristic. The electrode with 60% (mass ratio) manganese oxide has a high specific capacitance of 438 F/g and a lower inner resistance of 0.304 Ω using 38% (mass ration) H2SO4 solution. The capacitance retention of RuO2/MnO2 composite electrode was 92.5% after 300 cycles.

Key words: supercapacitorruthenium oxidemanganese oxidespecific capacitance

Abstract: Ruthenium oxide and manganese oxide nanomaterials were respectively prepared by a sol-gel process and hydrothermal synthesis method. The morphologies and microstructures of the composite nanomaterials were characterized by SEM and XRD. Based on the cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge-discharge techniques, the performances of the electrodes were investigated. The results show that the composite of manganese oxide and ruthenium oxide is beneficial to improve the impedance characteristic. The electrode with 60% (mass ratio) manganese oxide has a high specific capacitance of 438 F/g and a lower inner resistance of 0.304 Ω using 38% (mass ration) H2SO4 solution. The capacitance retention of RuO2/MnO2 composite electrode was 92.5% after 300 cycles.

Key words: supercapacitorruthenium oxidemanganese oxidespecific capacitance



References:

[1]

Jiang H, Ma J, Li C Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes[J]. Adv Mater, 2012, 24(30): 4197.

[2]

Hsieh T F, Chuang C C, Chen W J. Hydrous ruthenium dioxide/multi-walled carbon-nanotube/titanium electrodes for supercapacitors[J]. Carbon, 2012, 50(5): 1740.

[3]

Li X, Gan W P, Ma H R. Preparation of active carbon/RuO2 composite electrode and its properties[J]. Rare Metal Mat Eng, 2012, 41(4): 733.

[4]

Zhang H, Cao G P, Wang Z Y. Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils[J]. Carbon, 2008, 46: 822.

[5]

Chang J K, Lin C T, Tsai W T. Manganese oxide/carbon composite electrodes for electrochemical capacitors[J]. Electrochem Commun, 2004, 6: 666.

[6]

Liu H, Gan W P, Huang B. Preparation of Sn-doped RuO2 film electrode for supercapacitor[J]. Rare Metal Mat Eng, 2011, 40(1): 115.

[7]

Chang J K, Lee M T, Tsai W T. In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications[J]. J Power Sources, 2007, 166(2): 590.

[8]

Guo Y G, Hu Y S, Sigle W. Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks[J]. J Adv Mater, 2007, 19: 2087.

[9]

Hu C C, Guo H Y, Chang K H. Anodic composite deposition of RuO2·xH2O-TiO2 for electrochemical supercapacitors[J]. Electrochem Commun, 2009, 11: 1631.

[10]

Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1.

[11]

Liu R, Duay J, Lane T. Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors[J]. Phys Chem Chem Phys, 2010, 12(17): 4309.

[12]

Lee H, Cho M S, Kim I H. RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors[J]. Synthetic Met, 2010, 160(9): 1055.

[13]

Li Xiang, Gan Weiping, Ma Heran. preparation and properties research of the composite electrode materials of activated carbon/ruthenium oxide[J]. Rare Metal Mater Eng, 2012, 41(4): 733.

[14]

Zheng J P, Jow T R. A new charge storage mechanism for electrochemical capacitors[J]. J Electrochem Soc, 1995, 142(1).

[15]

Stoller M D, Ruoff R S. Best practice methods for determining an electrode material's performance for ultracapacitors[J]. Energy & Environmental Science, 2010, 3(9): 1294.

[1]

Jiang H, Ma J, Li C Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes[J]. Adv Mater, 2012, 24(30): 4197.

[2]

Hsieh T F, Chuang C C, Chen W J. Hydrous ruthenium dioxide/multi-walled carbon-nanotube/titanium electrodes for supercapacitors[J]. Carbon, 2012, 50(5): 1740.

[3]

Li X, Gan W P, Ma H R. Preparation of active carbon/RuO2 composite electrode and its properties[J]. Rare Metal Mat Eng, 2012, 41(4): 733.

[4]

Zhang H, Cao G P, Wang Z Y. Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils[J]. Carbon, 2008, 46: 822.

[5]

Chang J K, Lin C T, Tsai W T. Manganese oxide/carbon composite electrodes for electrochemical capacitors[J]. Electrochem Commun, 2004, 6: 666.

[6]

Liu H, Gan W P, Huang B. Preparation of Sn-doped RuO2 film electrode for supercapacitor[J]. Rare Metal Mat Eng, 2011, 40(1): 115.

[7]

Chang J K, Lee M T, Tsai W T. In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications[J]. J Power Sources, 2007, 166(2): 590.

[8]

Guo Y G, Hu Y S, Sigle W. Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks[J]. J Adv Mater, 2007, 19: 2087.

[9]

Hu C C, Guo H Y, Chang K H. Anodic composite deposition of RuO2·xH2O-TiO2 for electrochemical supercapacitors[J]. Electrochem Commun, 2009, 11: 1631.

[10]

Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1.

[11]

Liu R, Duay J, Lane T. Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors[J]. Phys Chem Chem Phys, 2010, 12(17): 4309.

[12]

Lee H, Cho M S, Kim I H. RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors[J]. Synthetic Met, 2010, 160(9): 1055.

[13]

Li Xiang, Gan Weiping, Ma Heran. preparation and properties research of the composite electrode materials of activated carbon/ruthenium oxide[J]. Rare Metal Mater Eng, 2012, 41(4): 733.

[14]

Zheng J P, Jow T R. A new charge storage mechanism for electrochemical capacitors[J]. J Electrochem Soc, 1995, 142(1).

[15]

Stoller M D, Ruoff R S. Best practice methods for determining an electrode material's performance for ultracapacitors[J]. Energy & Environmental Science, 2010, 3(9): 1294.

[1]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[2]

Duan Baoxing, Yang Yintang, Zhang Bo, Li Zhaoji. An Ultra-Low Specific On-Resistance VDMOS with a Step Oxide-Bypassed Trench Structure. J. Semicond., 2008, 29(4): 677.

[3]

Liao Jingning, Guo Chunsheng, Liu Pengfei, Wu Yuehua, Li Zhiguo. Reliability Model of Thin Oxide CMOS. J. Semicond., 2006, 27(S1): 257.

[4]

Ali Arif, Okba Belahssen, Salim Gareh, Said Benramache. The calculation of band gap energy in zinc oxide films. J. Semicond., 2015, 36(1): 013001. doi: 10.1088/1674-4926/36/1/013001

[5]

Yue Shuanglin, Xu Tingting, Li Wei, Yan Ji, Yi He. Tungsten oxide nanostructures: controllable growth and field emission. J. Semicond., 2012, 33(6): 063002. doi: 10.1088/1674-4926/33/6/063002

[6]

Dong Limin, Guo Xia, Qu Hongwei, Deng Jun, Du Jinyu, Zou Deshu, Shen Guangdi. Kinetics of Growth of AlAs/AlGaAs Oxide in Cylindrical Mesa. J. Semicond., 2005, 26(S1): 281.

[7]

Haonan Zhang, Ming Zhuo, Yazi Luo, Yuejiao Chen. Mesoporous tin oxide nanospheres for a NOx in air sensor. J. Semicond., 2017, 38(2): 023003. doi: 10.1088/1674-4926/38/2/023003

[8]

Xutang Tao. Bulk gallium oxide single crystal growth. J. Semicond., 2019, 40(1): 010401. doi: 10.1088/1674-4926/40/1/010401

[9]

Yue Hao. Gallium oxide: promise to provide more efficient life. J. Semicond., 2019, 40(1): 010301. doi: 10.1088/1674-4926/40/1/010301

[10]

Han Weiqing, Zhou Gang, Wang Lianjun, Sun Xiuyun, Li Jiansheng. Fabrication of Tin Oxide Porous Nanostructures on Titanium by Anodization and Electroplating. J. Semicond., 2006, 27(12): 2134.

[11]

S.S. Shinde, C.H. Bhosale, K.Y. Rajpure. Solar light assisted photocatalysis of water using a zinc oxide semiconductor. J. Semicond., 2013, 34(4): 043002. doi: 10.1088/1674-4926/34/4/043002

[12]

Tadatsugu Minami, Yuki Nishi, Toshihiro Miyata. Cu2O-based solar cells using oxide semiconductors. J. Semicond., 2016, 37(1): 014002. doi: 10.1088/1674-4926/37/1/014002

[13]

Wang Jing, Huang Qing'an, Yu Hong. Effect of Native Oxide on Elasticity of a Silicon Nano-Plate. J. Semicond., 2007, 28(7): 1048.

[14]

Jiang Yibo, Du Huan, Zeng Chuanbin, Han Zhengsheng. ESD protection design for the gate oxide of an RF-LDMOS. J. Semicond., 2012, 33(4): 044007. doi: 10.1088/1674-4926/33/4/044007

[15]

Hu Shigang, Hao Yue, Ma Xiaohua, Cao Yanrong, Chen Chi, Wu Xiaofeng. Degradation of nMOS and pMOSFETs with Ultrathin Gate Oxide Under DT Stress. J. Semicond., 2008, 29(11): 2136.

[16]

Muhammad Tariq Saeed Chani, Sher Bahadar Khan, Kh. S. Karimov, M. Abid, Abdullah M. Asiri, Kalsoom Akhtar. Synthesis of metal oxide composite nanosheets and their pressure sensing properties. J. Semicond., 2015, 36(2): 023002. doi: 10.1088/1674-4926/36/2/023002

[17]

Bao Li, Bao Junlin, Zhuang Yiqi. A Method for Locating the Position of an Oxide Trap in a MOSFET by RTS Noise. J. Semicond., 2006, 27(8): 1426.

[18]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[19]

Zhou Jianping, Chai Chunlin, Yang Shaoyan, Liu Zhikai, Song Shulin, Li Yanli, Chen Nuofu, Lin Yuanhua. Effect of Ion Energy and Substrate Temperature on Gadolinium Oxide Structure. J. Semicond., 2005, 26(S1): 57.

[20]

Xiaoyu Chen, Hao Wang, Gongchen Sun, Xiaoyu Ma, Jianguang Gao, Wengang Wu. Resistive switching characteristic of electrolyte-oxide-semiconductor structures. J. Semicond., 2017, 38(8): 084003. doi: 10.1088/1674-4926/38/8/084003

Search

Advanced Search >>

GET CITATION

J M Lei, X M Chen. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes[J]. J. Semicond., 2015, 36(8): 083006. doi: 10.1088/1674-4926/36/8/083006.

Export: BibTex EndNote

Article Metrics

Article views: 567 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 21 January 2015 Manuscript revised: Online: Published: 01 August 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误