J. Semicond. > Volume 36 > Issue 8 > Article Number: 086001

Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods

Yiluan Guo , Guilei Wang , Chao Zhao and Jun Luo ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A new simulation method and test instrument has been adopted to verify the traditional stress simulation in FinFET. First, a new algorithm named lattice kinetic Monte Carlo (LKMC) is used to simulate the SiGe epitaxy in source/drain regions and the stress distribution is consequently extracted after the LKMC simulation. Systematic comparison between the traditional polyhedron method and the LKMC method is carried out. The results confirm that extracted stress from both methods is consistent, which verifies the validity of traditional polyhedron method for the purpose of simulating stress in FinFET. In the following experiment, p-type FinFETs with SiGe stressors in source/drain regions are fabricated. The nano beam diffraction (NBD) method is employed to characterize the strain in Si fin. The strain value from the NBD test agrees well with the value extracted from traditional polyhedron simulation.

Key words: stresssimulationFinFETNBDverification

Abstract: A new simulation method and test instrument has been adopted to verify the traditional stress simulation in FinFET. First, a new algorithm named lattice kinetic Monte Carlo (LKMC) is used to simulate the SiGe epitaxy in source/drain regions and the stress distribution is consequently extracted after the LKMC simulation. Systematic comparison between the traditional polyhedron method and the LKMC method is carried out. The results confirm that extracted stress from both methods is consistent, which verifies the validity of traditional polyhedron method for the purpose of simulating stress in FinFET. In the following experiment, p-type FinFETs with SiGe stressors in source/drain regions are fabricated. The nano beam diffraction (NBD) method is employed to characterize the strain in Si fin. The strain value from the NBD test agrees well with the value extracted from traditional polyhedron simulation.

Key words: stresssimulationFinFETNBDverification



References:

[1]

Auth C, Allen C, Blattner A. A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors[J]. Symposium on VLSI Technology, Hawaii, 2012: 131.

[2]

Conzatti F, Serra N, Lander R J P. Investigation of strain engineering in FinFETs comprising experimental analysis and numerical simulations[J]. IEEE Trans Electron Devices, 2011, 58: 1583.

[3]

Nainani A, Gupta S, Moroz V. Is strain engineering scalable in FinFET era? teaching the old dog some new tricks[J]. IEDM, San Francisco, 2012, 18(3): 1.

[4]

Wang G, Moeen M, Radamson H. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS)[J]. J Appl Phys, 2013, 114: 2351.

[5]

Eneman G, Brunco D, Loo R. Stress simulations for optimal mobility group IV p- and n-MOS FinFETs for the 14 nm node and beyond[J]. IEDM, San Francisco, 2012, 6(5): 1.

[6]

Xu N, Ho B, Choi M. Effectiveness of stressors in aggressively scaled FinFETs[J]. IEEE Trans Electron Devices, 2012, 59: 1592.

[7]

Martin-Bragado I, Moroz V. Modeling of {311} facets using a lattice kinetic Monte Carlo three-dimensional model for selective epitaxial growth of silicon[J]. Appl Phys Lett, 2011, 98: 153111.

[8]

Wang G, Luo J, Zhao C. Integration of highly-strained SiGe materials in 14nm node FinFET technology and beyond[J]. Solid-State Electron, 2015, 103: 222.

[9]

Hopcroft M, Nix W, Kenny T. What is the Young's modulus of silicon[J]. J Microelectromech Syst, 2010, 19: 229.

[10]

Ding Y, Cheng R, Yeo Y. Lattice strain analysis of silicon fin field-effect transistor structures wrapped by Ge2Sb2Te5 liner stressor[J]. J Appl Phys, 2013, 113: 073708.

[11]

Beche A, Rouviere J, Hartmann J. Improved precision in strain measurement using nanobeam electron diffraction[J]. Appl Phys Lett, 2009, 95: 123114.

[12]

Pei G, Kedzierski J, Oldiges P. FinFET design considerations based on 3-D simulation and analytical modeling[J]. IEEE Trans Electron Devices, 2002, 49: 1411.

[1]

Auth C, Allen C, Blattner A. A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors[J]. Symposium on VLSI Technology, Hawaii, 2012: 131.

[2]

Conzatti F, Serra N, Lander R J P. Investigation of strain engineering in FinFETs comprising experimental analysis and numerical simulations[J]. IEEE Trans Electron Devices, 2011, 58: 1583.

[3]

Nainani A, Gupta S, Moroz V. Is strain engineering scalable in FinFET era? teaching the old dog some new tricks[J]. IEDM, San Francisco, 2012, 18(3): 1.

[4]

Wang G, Moeen M, Radamson H. Optimization of SiGe selective epitaxy for source/drain engineering in 22 nm node complementary metal-oxide semiconductor (CMOS)[J]. J Appl Phys, 2013, 114: 2351.

[5]

Eneman G, Brunco D, Loo R. Stress simulations for optimal mobility group IV p- and n-MOS FinFETs for the 14 nm node and beyond[J]. IEDM, San Francisco, 2012, 6(5): 1.

[6]

Xu N, Ho B, Choi M. Effectiveness of stressors in aggressively scaled FinFETs[J]. IEEE Trans Electron Devices, 2012, 59: 1592.

[7]

Martin-Bragado I, Moroz V. Modeling of {311} facets using a lattice kinetic Monte Carlo three-dimensional model for selective epitaxial growth of silicon[J]. Appl Phys Lett, 2011, 98: 153111.

[8]

Wang G, Luo J, Zhao C. Integration of highly-strained SiGe materials in 14nm node FinFET technology and beyond[J]. Solid-State Electron, 2015, 103: 222.

[9]

Hopcroft M, Nix W, Kenny T. What is the Young's modulus of silicon[J]. J Microelectromech Syst, 2010, 19: 229.

[10]

Ding Y, Cheng R, Yeo Y. Lattice strain analysis of silicon fin field-effect transistor structures wrapped by Ge2Sb2Te5 liner stressor[J]. J Appl Phys, 2013, 113: 073708.

[11]

Beche A, Rouviere J, Hartmann J. Improved precision in strain measurement using nanobeam electron diffraction[J]. Appl Phys Lett, 2009, 95: 123114.

[12]

Pei G, Kedzierski J, Oldiges P. FinFET design considerations based on 3-D simulation and analytical modeling[J]. IEEE Trans Electron Devices, 2002, 49: 1411.

[1]

Tian Wang, Xiaoxin Cui, Yewen Ni, Kai Liao, Nan Liao, Dunshan Yu, Xiaole Cui. Reliability evaluation of high-performance, low-power FinFET standard cells based on mixed RBB/FBB technique. J. Semicond., 2017, 38(4): 044005. doi: 10.1088/1674-4926/38/4/044005

[2]

D. Suresh, K. K. Nagarajan, R. Srinivasan. The impact of process variations on input impedance and mitigation using a circuit technique in FinFET-based LNA. J. Semicond., 2015, 36(4): 045002. doi: 10.1088/1674-4926/36/4/045002

[3]

Jie Yang, Kunpeng Jia, Yajuan Su, Yang Chen, Chao Zhao. Hysteresis analysis of graphene transistor under repeated test and gate voltage stress. J. Semicond., 2014, 35(9): 094003. doi: 10.1088/1674-4926/35/9/094003

[4]

Savitesh Madhulika Sharma, S. Dasgupta, M. V. Kartikeyan. A transformed analytical model for thermal noise of FinFET based on fringing field approximation. J. Semicond., 2016, 37(9): 094001. doi: 10.1088/1674-4926/37/9/094001

[5]

Lei Shi, Shiwei Feng, Kun Liu, Yamin Zhang. Mechanism of the self-changing parameters and characteristics in AlGaN/GaN high-electron mobility transistors after a step voltage stress. J. Semicond., 2015, 36(7): 074005. doi: 10.1088/1674-4926/36/7/074005

[6]

Huang Wei, Ru Guoping, Detavernier C, Van Meirhaeghe R L, Jiang Yulong, Qu Xinping, Li Bingzong. Effect of Pt Addition on the Stress of NiSi Film Formed on Si (100). J. Semicond., 2007, 28(5): 635.

[7]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[8]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[9]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[10]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[11]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[12]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[13]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[14]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[15]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[16]

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

[17]

Wu Tao, Du Gang, Liu Xiaoyan, Kang Jinfeng, Han Ruqi. Characteristics of Nanometer MOSFETs with Mechanical Strain in the Channel. J. Semicond., 2006, 27(S1): 415.

[18]

Longxiang Yin, Gang Du, Xiaoyan Liu. Impact of ambient temperature on the self-heating effects in FinFETs. J. Semicond., 2018, 39(9): 094011. doi: 10.1088/1674-4926/39/9/094011

[19]

Xiaolong Li, Liuhong Ma, Yuanfei Ai, Weihua Han. From parabolic approximation to evanescent mode analysis on SOI MOSFET. J. Semicond., 2017, 38(2): 024005. doi: 10.1088/1674-4926/38/2/024005

[20]

Weikang Wu, Xia An, Xiaobo Jiang, Yehua Chen, Jingjing Liu, Xing Zhang, Ru Huang. Line-edge roughness induced single event transient variation in SOI FinFETs. J. Semicond., 2015, 36(11): 114001. doi: 10.1088/1674-4926/36/11/114001

Search

Advanced Search >>

GET CITATION

Y L Guo, G L Wang, C Zhao, J Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods[J]. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001.

Export: BibTex EndNote

Article Metrics

Article views: 1118 Times PDF downloads: 16 Times Cited by: 0 Times

History

Manuscript received: 16 December 2014 Manuscript revised: Online: Published: 01 August 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误