J. Semicond. > Volume 37 > Issue 1 > Article Number: 014005

Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization

Yunfang Jia and Cheng Ju

+ Author Affilications + Find other works by these authors

PDF

Abstract: The graphene field effect transistor (GFET) has been widely studied and developed as sensors and functional devices. The first report about GFET sensing simulation on the device level is proposed. The GFET's characteristics, its responding for single strand DNA (ssDNA) and hybridization with the complimentary DNA (cDNA) are simulated based on Sentaurus, a popular CAD tool for electronic devices. The agreement between the simulated blank GFET feature and the reported experimental data suggests the feasibility of the presented simulation method. Then the simulations of ssDNA immobilization on GFET and hybridization with its cDNA are performed, the results are discussed based on the electron transfer (ET) mechanism between DNA and graphene.

Key words: graphene field effect transistorDNAsimulationelectron transferSentaurus

Abstract: The graphene field effect transistor (GFET) has been widely studied and developed as sensors and functional devices. The first report about GFET sensing simulation on the device level is proposed. The GFET's characteristics, its responding for single strand DNA (ssDNA) and hybridization with the complimentary DNA (cDNA) are simulated based on Sentaurus, a popular CAD tool for electronic devices. The agreement between the simulated blank GFET feature and the reported experimental data suggests the feasibility of the presented simulation method. Then the simulations of ssDNA immobilization on GFET and hybridization with its cDNA are performed, the results are discussed based on the electron transfer (ET) mechanism between DNA and graphene.

Key words: graphene field effect transistorDNAsimulationelectron transferSentaurus



References:

[1]

Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183.

[2]

Lin Y M, Dimitrakopoulos C, Jenkins K A. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662.

[3]

Pumera M. Graphene-based nanomaterials for energy storage[J]. Energy & Environmental Science, 2011, 4(3): 668.

[4]

Vivekchand S, Rout C S, Subrahmanyam K. Graphene-based electrochemical supercapacitors[J]. J Chem Sci, 2008, 120(1): 9.

[5]

Wu Z S, Ren W, Xu L. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7): 5463.

[6]

Pumera M, Ambrosi A, Bonanni A. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9): 954.

[7]

Pumera M. Graphene in biosensing[J]. Materials Today, 2011, 14(7): 308.

[8]

Ohno Y, Maehashi K, Yamashiro Y. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption[J]. Nano Lett, 2009, 9(9): 3318.

[9]

Dong X, Shi Y, Huang W. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets[J]. Adv Mater, 2010, 22(14): 1649.

[10]

Huang Y, Dong X, Liu Y. Graphene-based biosensors for detection of bacteria and their metabolic activities[J]. J Mater Chem, 2011, 21(33): 12358.

[11]

Inaba A, Yoo G, Takei Y. A graphene FET gas sensor gated by ionic liquid[J]. IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013: 969.

[12]

WookáPark J, JooáPark S, SeokáKwon O. High-performance Hg2+ FET type sensors based on reduced graphene oxide-polyfuran nanohybrids[J]. Analyst, 2014, 139(16): 3852.

[13]

Kratochvilova I, Golan M, Vala M. Theoretical and experimental study of charge transfer through DNA:impact of mercury mediated T-Hg-T base pair[J]. J Phys Chem B, 2014, 118(20): 5374.

[14]

Kawai K, Majima T. Hole transfer kinetics of DNA[J]. Accounts of Chemical Research, 2013, 46(11): 2616.

[15]

Sontz P A, Muren N B, Barton J K. DNA charge transport for sensing and signaling[J]. Accounts of Chemical Research, 2012, 45(10): 1792.

[16]

Wagenknecht H A. Electron transfer processes in DNA:mechanisms, biological relevance and applications in DNA analytics[J]. Natural Product Reports, 2006, 23(6): 973.

[17]

Ramos M M, Correia H M. Electric field induced charge transfer through single-and double-stranded DNA polymer molecules[J]. Soft Matter, 2011, 7(21): 10091.

[18]

Jortner J, Bixon M, Langenbacher T. Charge transfer and transport in DNA[J]. Proceedings of the National Academy of Sciences, 1998, 95(22): 12759.

[19]

Dekker C, Ratner M A. Electronic properties of DNA[J]. Phys World, 2001, 14(8): 29.

[20]

Lu Y, Goldsmith B R, Kybert N J. DNA-decorated graphene chemical sensors[J]. Appl Phys Lett, 2010, 97(8): 083107.

[21]

Kybert N J, Han G H, Lerner M B. Scalable arrays of chemical vapor sensors based on DNA-decorated graphene[J]. Nano Research, 2014, 7(1): 95.

[22]

Prieto Simón B, Campás M, Marty J L. Electrochemical aptamer-based sensors[J]. Bioanalytical Reviews, 2010, 1(2-4): 141.

[23]

Strehlitz B, Reinemann C, Linkorn S. Aptamers for pharmaceuticals and their application in environmental analytics[J]. Bioanalytical Reviews, 2012, 4(1): 1.

[24]

Balamurugan S, Obubuafo A, Soper S A. Surface immobilization methods for aptamer diagnostic applications[J]. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1009.

[25]

Nathaniel S. Green, L M. Norton interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices:a review[J]. Analytica Chimica Acta, 2015, 853(853): 127.

[26]

Hasegawa M, Hirayama Y, Ohno Y. Characterization of reduced graphene oxide field-effect transistor and its application to biosensor[J]. Jpn J Appl Phys, 2014, 53.

[27]

Qiu W, Skafidas E. Graphene nanopore field effect transistors[J]. J Appl Phys, 2014, 116(2): 023709.

[28]

Park S J, Kwon O S, Lee S H. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose[J]. Nano Lett, 2012, 12(10): 5082.

[29]

Chen T Y, Loan P T K, Hsu C L. Label-free detection of DNA hybridization using transistors based on CVD grown graphene[J]. Biosensors and Bioelectronics, 2013, 41: 103.

[30]

Sohn I Y, Kim D J, Jung J H. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors[J]. Biosensors and Bioelectronics, 2013, 45: 70.

[31]

Kim D J, Sohn I Y, Jung J H. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection[J]. Biosensors and Bioelectronics, 2013, 41: 621.

[32]

Matsumoto K, Maehashi K, Ohno Y. Advances in graphene device & bio-sensor applications[J]. Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2013: 63.

[33]

Fiori G, Neumaier D, Szafranek B N. Bilayer graphene transistors for analog electronics[J]. IEEE Trans Electron Devices, 2014, 61: 729.

[34]

Kang C G, Lee Y G, Lee S K. Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors[J]. Carbon, 2013, 53: 182.

[35]

Ritzert N L, Li W, Tan C. Single layer graphene as an electrochemical platform[J]. Faraday Discussions, 2014: 27.

[36]

Bhalla V, Bajpai R P, Bharadwaj L M. DNA electronics[J]. EMBO Reports, 2003, 4(5): 442.

[37]

Paul A, Watson R M, Lund P. Charge transfer through single-stranded peptide nucleic acid composed of thymine nucleotides[J]. J Phys Chem C, 2008, 112(18): 7233.

[38]

Kelley S O, Barton J K. Electron transfer between bases in double helical DNA[J]. Science, 1999, 283(5400): 375.

[39]

Olofsson J, Larsson S. Electron hole transport in DNA[J]. J Phys Chem B, 2001, 105(42): 10398.

[40]

Taniguchi M, Kawai T. DNA electronics[J]. Physica E:Low-dimensional Systems and Nanostructures, 2006, 33(1): 1.

[41]

Boon E M, Barton J K. Charge transport in DNA[J]. Current Opinion in Structural Biology, 2002, 12(3): 320.

[42]

Chen H, Müller M B, Gilmore K J. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Adv Mater, 2008, 20(18): 3557.

[43]

Wang K, Ruan J, Song H. Biocompatibility of graphene oxide[J]. Nanoscale Res Lett, 2011, 6(8): 1.

[44]

Kuila T, Bose S, Khanra P. Recent advances in graphene-based biosensors[J]. Biosensors and Bioelectronics, 2011, 26(12): 4637.

[45]

Zhang K, Liu X. One step synthesis and characterization of CdS nanorod/graphene nanosheet composite[J]. Appl Surf Sci, 2011, 257(24): 10379.

[46]

Karimi H, Yusof R, Rahmani R. Development of solution-gated graphene transistor model for biosensors[J]. Nanoscale Research Letters, 2014, 9(1): 1.

[47]

Sujith M, Chacko A E, Divakaran R. Design optimization of segmented-channel MOSFET using high-k dielectric material[J]. International Conference on Electronics and Communication Systems (ICECS), 2014: 1.

[48]

Burenkov A, Belko V, Lorenz J. Self-heating of nano-scale SOI MOSFETs:TCAD and molecular dynamics simulations[J]. 19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2013: 305.

[49]

McCann E, Koshino M. The electronic properties of bilayer graphene[J]. Reports on Progress in Physics, 2013, 76(5): 056503.

[50]

Abadi H K F, Yusof R, Eshrati S M. Current-voltage modeling of graphene-based DNA sensor[J]. Neural Computing and Applications, 2014, 24(1): 85.

[1]

Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183.

[2]

Lin Y M, Dimitrakopoulos C, Jenkins K A. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662.

[3]

Pumera M. Graphene-based nanomaterials for energy storage[J]. Energy & Environmental Science, 2011, 4(3): 668.

[4]

Vivekchand S, Rout C S, Subrahmanyam K. Graphene-based electrochemical supercapacitors[J]. J Chem Sci, 2008, 120(1): 9.

[5]

Wu Z S, Ren W, Xu L. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7): 5463.

[6]

Pumera M, Ambrosi A, Bonanni A. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9): 954.

[7]

Pumera M. Graphene in biosensing[J]. Materials Today, 2011, 14(7): 308.

[8]

Ohno Y, Maehashi K, Yamashiro Y. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption[J]. Nano Lett, 2009, 9(9): 3318.

[9]

Dong X, Shi Y, Huang W. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets[J]. Adv Mater, 2010, 22(14): 1649.

[10]

Huang Y, Dong X, Liu Y. Graphene-based biosensors for detection of bacteria and their metabolic activities[J]. J Mater Chem, 2011, 21(33): 12358.

[11]

Inaba A, Yoo G, Takei Y. A graphene FET gas sensor gated by ionic liquid[J]. IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013: 969.

[12]

WookáPark J, JooáPark S, SeokáKwon O. High-performance Hg2+ FET type sensors based on reduced graphene oxide-polyfuran nanohybrids[J]. Analyst, 2014, 139(16): 3852.

[13]

Kratochvilova I, Golan M, Vala M. Theoretical and experimental study of charge transfer through DNA:impact of mercury mediated T-Hg-T base pair[J]. J Phys Chem B, 2014, 118(20): 5374.

[14]

Kawai K, Majima T. Hole transfer kinetics of DNA[J]. Accounts of Chemical Research, 2013, 46(11): 2616.

[15]

Sontz P A, Muren N B, Barton J K. DNA charge transport for sensing and signaling[J]. Accounts of Chemical Research, 2012, 45(10): 1792.

[16]

Wagenknecht H A. Electron transfer processes in DNA:mechanisms, biological relevance and applications in DNA analytics[J]. Natural Product Reports, 2006, 23(6): 973.

[17]

Ramos M M, Correia H M. Electric field induced charge transfer through single-and double-stranded DNA polymer molecules[J]. Soft Matter, 2011, 7(21): 10091.

[18]

Jortner J, Bixon M, Langenbacher T. Charge transfer and transport in DNA[J]. Proceedings of the National Academy of Sciences, 1998, 95(22): 12759.

[19]

Dekker C, Ratner M A. Electronic properties of DNA[J]. Phys World, 2001, 14(8): 29.

[20]

Lu Y, Goldsmith B R, Kybert N J. DNA-decorated graphene chemical sensors[J]. Appl Phys Lett, 2010, 97(8): 083107.

[21]

Kybert N J, Han G H, Lerner M B. Scalable arrays of chemical vapor sensors based on DNA-decorated graphene[J]. Nano Research, 2014, 7(1): 95.

[22]

Prieto Simón B, Campás M, Marty J L. Electrochemical aptamer-based sensors[J]. Bioanalytical Reviews, 2010, 1(2-4): 141.

[23]

Strehlitz B, Reinemann C, Linkorn S. Aptamers for pharmaceuticals and their application in environmental analytics[J]. Bioanalytical Reviews, 2012, 4(1): 1.

[24]

Balamurugan S, Obubuafo A, Soper S A. Surface immobilization methods for aptamer diagnostic applications[J]. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1009.

[25]

Nathaniel S. Green, L M. Norton interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices:a review[J]. Analytica Chimica Acta, 2015, 853(853): 127.

[26]

Hasegawa M, Hirayama Y, Ohno Y. Characterization of reduced graphene oxide field-effect transistor and its application to biosensor[J]. Jpn J Appl Phys, 2014, 53.

[27]

Qiu W, Skafidas E. Graphene nanopore field effect transistors[J]. J Appl Phys, 2014, 116(2): 023709.

[28]

Park S J, Kwon O S, Lee S H. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose[J]. Nano Lett, 2012, 12(10): 5082.

[29]

Chen T Y, Loan P T K, Hsu C L. Label-free detection of DNA hybridization using transistors based on CVD grown graphene[J]. Biosensors and Bioelectronics, 2013, 41: 103.

[30]

Sohn I Y, Kim D J, Jung J H. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors[J]. Biosensors and Bioelectronics, 2013, 45: 70.

[31]

Kim D J, Sohn I Y, Jung J H. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection[J]. Biosensors and Bioelectronics, 2013, 41: 621.

[32]

Matsumoto K, Maehashi K, Ohno Y. Advances in graphene device & bio-sensor applications[J]. Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2013: 63.

[33]

Fiori G, Neumaier D, Szafranek B N. Bilayer graphene transistors for analog electronics[J]. IEEE Trans Electron Devices, 2014, 61: 729.

[34]

Kang C G, Lee Y G, Lee S K. Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors[J]. Carbon, 2013, 53: 182.

[35]

Ritzert N L, Li W, Tan C. Single layer graphene as an electrochemical platform[J]. Faraday Discussions, 2014: 27.

[36]

Bhalla V, Bajpai R P, Bharadwaj L M. DNA electronics[J]. EMBO Reports, 2003, 4(5): 442.

[37]

Paul A, Watson R M, Lund P. Charge transfer through single-stranded peptide nucleic acid composed of thymine nucleotides[J]. J Phys Chem C, 2008, 112(18): 7233.

[38]

Kelley S O, Barton J K. Electron transfer between bases in double helical DNA[J]. Science, 1999, 283(5400): 375.

[39]

Olofsson J, Larsson S. Electron hole transport in DNA[J]. J Phys Chem B, 2001, 105(42): 10398.

[40]

Taniguchi M, Kawai T. DNA electronics[J]. Physica E:Low-dimensional Systems and Nanostructures, 2006, 33(1): 1.

[41]

Boon E M, Barton J K. Charge transport in DNA[J]. Current Opinion in Structural Biology, 2002, 12(3): 320.

[42]

Chen H, Müller M B, Gilmore K J. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Adv Mater, 2008, 20(18): 3557.

[43]

Wang K, Ruan J, Song H. Biocompatibility of graphene oxide[J]. Nanoscale Res Lett, 2011, 6(8): 1.

[44]

Kuila T, Bose S, Khanra P. Recent advances in graphene-based biosensors[J]. Biosensors and Bioelectronics, 2011, 26(12): 4637.

[45]

Zhang K, Liu X. One step synthesis and characterization of CdS nanorod/graphene nanosheet composite[J]. Appl Surf Sci, 2011, 257(24): 10379.

[46]

Karimi H, Yusof R, Rahmani R. Development of solution-gated graphene transistor model for biosensors[J]. Nanoscale Research Letters, 2014, 9(1): 1.

[47]

Sujith M, Chacko A E, Divakaran R. Design optimization of segmented-channel MOSFET using high-k dielectric material[J]. International Conference on Electronics and Communication Systems (ICECS), 2014: 1.

[48]

Burenkov A, Belko V, Lorenz J. Self-heating of nano-scale SOI MOSFETs:TCAD and molecular dynamics simulations[J]. 19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2013: 305.

[49]

McCann E, Koshino M. The electronic properties of bilayer graphene[J]. Reports on Progress in Physics, 2013, 76(5): 056503.

[50]

Abadi H K F, Yusof R, Eshrati S M. Current-voltage modeling of graphene-based DNA sensor[J]. Neural Computing and Applications, 2014, 24(1): 85.

[1]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[2]

Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005

[3]

Liu Xueqiang, Zhang Tong, Wang Lijie, Xia Zhiqiang, Li Mingyou, Liu Shiyong. A Testing Method on a Thin Film Transistor Array for Active Matrix Organic Emitting Diode. J. Semicond., 2007, 28(7): 1161.

[4]

Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002

[5]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[6]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[7]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[8]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[9]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[10]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[11]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[12]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[13]

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

[14]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[15]

Changyong Zheng, Wei Zhang, Tailong Xu, Yuehua Dai, Junning Chen. A compact model for single material double work function gate MOSFET. J. Semicond., 2013, 34(9): 094006. doi: 10.1088/1674-4926/34/9/094006

[16]

Jiang Shouzhen, Xu Xian'gang, Li Juan, Chen Xiufang, Wang Yingmin, Ning Li'na, Hu Xiaobo, Wang Jiyang, Jiang Minhua. Recent Progress in SiC Monocrystal Growth and Wafer Machining. J. Semicond., 2007, 28(5): 810.

[17]

Xu Shengrui, Hao Yue, Feng Hui, Li Dechang, Zhang Jincheng. A Novel Double RESURF TG-LDMOS Device Structure. J. Semicond., 2007, 28(2): 232.

[18]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[19]

Tianyue Wang, Jiewei Chen, Gaoxiang Wu, Dandan Song, Meicheng Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005

[20]

Yi Pang, Xiang Li, Baiqin Zhao. Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode. J. Semicond., 2016, 37(8): 084007. doi: 10.1088/1674-4926/37/8/084007

Search

Advanced Search >>

GET CITATION

Y F Jia, C Ju. Sentaurus® based modeling and simulation for GFET\'s characteristic for ssDNA immobilization and hybridization[J]. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005.

Export: BibTex EndNote

Article Metrics

Article views: 688 Times PDF downloads: 18 Times Cited by: 0 Times

History

Manuscript received: 19 April 2015 Manuscript revised: Online: Published: 01 January 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误