J. Semicond. > Volume 37 > Issue 10 > Article Number: 102002

Optical properties of InN studied by spectroscopic ellipsometry

Chunya Ye , Wei Lin , Jin Zhou , Shuping Li , , Li Chen , Heng Li , Xiaoxuan Wu , Songqing Liu and Junyong Kang

+ Author Affilications + Find other works by these authors

PDF

Abstract: With recently developed InN epitaxy via a controlling In bilayer, spectroscopic ellipsometry (SE) measurements had been carried out on the grown InN and the measured ellipsometric spectra were fitted with the Delta Psi2 software by using a suitable model and the dispersion rule. The thickness was measured by a scanning electron microscope (SEM). Insight into the film quality of InN and the lattice constant were gained by X-ray diffraction (XRD). By fitting the SE, the thickness of the InN film is consistent with that obtained by SEM cross-sectional thickness measurement. The optical bandgap of InN was put forward to be 1.05 eV, which conforms to the experimental results measured by the absorption spectrum and cathodoluminescence (CL). The refractive index and the extinction coefficient of interest were represented for InN, which is useful to design optoelectronic devices.

Key words: InNspectroscopic ellipsometryrefractive indexextinction coefficient

Abstract: With recently developed InN epitaxy via a controlling In bilayer, spectroscopic ellipsometry (SE) measurements had been carried out on the grown InN and the measured ellipsometric spectra were fitted with the Delta Psi2 software by using a suitable model and the dispersion rule. The thickness was measured by a scanning electron microscope (SEM). Insight into the film quality of InN and the lattice constant were gained by X-ray diffraction (XRD). By fitting the SE, the thickness of the InN film is consistent with that obtained by SEM cross-sectional thickness measurement. The optical bandgap of InN was put forward to be 1.05 eV, which conforms to the experimental results measured by the absorption spectrum and cathodoluminescence (CL). The refractive index and the extinction coefficient of interest were represented for InN, which is useful to design optoelectronic devices.

Key words: InNspectroscopic ellipsometryrefractive indexextinction coefficient



References:

[1]

Nakamura S, Fasol G. The blue laser diode—GaN-based light emitting diode and lasers. Heidelberg: Springer-Verlag, 1997

[2]

Lorenz K, Franco N, Alves E. Relaxation of compressively strained AlInN on GaN[J]. J Cryst Growth, 2008, 310(18): 4058. doi: 10.1016/j.jcrysgro.2008.07.006

[3]

Liu Na, Yi Xiaoyan, Liang Meng. Effects of the p-AlInGaN/GaN superlattices' structure on the performance of blue LEDs[J]. Journal of Semiconductors, 2014, 35(2): 024010. doi: 10.1088/1674-4926/35/2/024010

[4]

Jing Liang, Xiao Hongling, Wang Xiaoliang. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate[J]. Journal of Semiconductors, 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004

[5]

Gan C K, Srolovitz D J. First-principles study of wurtzite InN (0001) and (0001) surfaces[J]. Phys Rev B, 2006, 74(11): 115319. doi: 10.1103/PhysRevB.74.115319

[6]

Inushima T, Mamutin V V, Vekshin V A. Physical properties of InN with the band gap energy of 1.1 eV[J]. J Cryst Growth, 2001, 227/228(01): 481.

[7]

Davydov V Y, Klochikhin A A, Seisyan R P. Absorption and emission of hexagonal InN. evidence of narrow fundamental band gap[J]. Physica Status Solidi, 2002, 229(3): r1. doi: 10.1002/(ISSN)1521-3951

[8]

Wu J, Walukiewicz W, Yu K M. Unusual properties of the fundamental band gap of InN[J]. Appl Phys Lett, 2002, 80(21): 3967. doi: 10.1063/1.1482786

[9]

Wang H, Jiang D S, Zhu J J. The influence of growth temperature and input V/Ⅲ ratio on the initial nucleation and material properties of InN on GaN by MOCVD[J]. Semicond Sci Technol, 2009, 24(5): 177.

[10]

Laskar M R, Ganguli T, Kadir A. Influence of buffer layers on the microstructure of MOVPE grown a-plane InN[J]. J Cryst Growth, 2011, 315(1): 233. doi: 10.1016/j.jcrysgro.2010.08.019

[11]

Djurišić A B, Li E H. Modeling the optical constants of hexagonal GaN, InN, and AlN[J]. J Appl Phys, 1999, 85(5): 2848. doi: 10.1063/1.369604

[12]

Yu Tongjun, Kang Xiangning, Qin Zhixin. Strain effect on photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs[J]. Journal of Semiconductors, 2006, 27(13): 20.

[13]

Tao Tao, Zhang Zhao, Liu Lian. Surface morphology and composition studies in InGaN/GaN film grown by MOCVD[J]. Journal of Semiconductors, 2011, 32(8): 083002. doi: 10.1088/1674-4926/32/8/083002

[14]

Zhou Jin, Huang Qiangcan, Li Jinchai. The InN epitaxy via controlling In bilayer[J]. Nanoscale Research Letters, 2014, 9: 5. doi: 10.1186/1556-276X-9-5

[15]

Lee J H, Lee B, Kang J H. Optical characterization of nanoporous GaN by spectroscopic ellipsometry[J]. Thin Solid Films, 2012, 525(12): 84.

[16]

Azzam R M A, Bashara N M, Burns D T, et al. Ellipsometry and polarized light. North Holland, 1987

[17]

Barshilia H C, Selvakumar N, Rajam K S. TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications[J]. Appl Phys Lett, 2006, 89(19): 191909. doi: 10.1063/1.2387897

[18]

Bhattacharyya D, Biswas A, Sahoo N K. Investigation on dispersion of optical constants of Gd2O3 films by phase modulated spectroscopic ellipsometry[J]. J Appl Phys, 2004, 233(1-4): 155.

[19]

Drévillon B. Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semiconductors[J]. Progress in Crystal Growth & Characterization of Materials, 1993, 27(1): 1.

[20]

Xiong Y M, Snyder P G. Variable angle spectroscopic ellipsometric characterization of surface damage in chemical-mechanical polished GaAs[J]. Thin Solid Films, 1992, 220(1/2): 303.

[21]

Biswas A, Yadav B S, Bhattacharyya D. Spectroscopic ellipsometry studies of reactively sputtered nitrogen-rich GaAsN films[J]. J Non-Cryst Solids, 2011, 357(18): 3293. doi: 10.1016/j.jnoncrysol.2011.06.007

[22]

Jiang W, Lin W, Li S P. Optical anisotropy of AlN epilayer on sapphire substrate investigated by variable-angle spectroscopic ellipsometry[J]. Optical Materials, 2010, 32: 891. doi: 10.1016/j.optmat.2010.01.015

[23]

Kisielowski C. Semiconductor and Semimetals. 1998, Chap 7

[24]

Zhao Y, Wang H, Wu G G. Effect of nitridation on structure, electrical and optical properties of InN epilayers grown on sapphire by PAMBE[J]. Vacuum, 2015, 111: 15. doi: 10.1016/j.vacuum.2014.09.014

[25]

Zhao Y, Wang H, Yang H. Growth temperature induced physical property variation of InN films grown on nitrided sapphire substrate by PAMBE[J]. Vacuum, 2015, 112: 55. doi: 10.1016/j.vacuum.2014.11.016

[26]

Tanguy C, Lefebvre P, Mathieu H. Analytical model for the refractive index in quantum wells derived from the complex dielectric constant of Wannier excitons in noninteger dimensions[J]. J Appl Phys, 1997, 82: 798. doi: 10.1063/1.365580

[27]

Tanguy C. Optical dispersion by Wannier excitons[J]. Phys Rev Lett, 1995, 75: 4090. doi: 10.1103/PhysRevLett.75.4090

[28]

Yu Yangjing, Zhang Bin, Li Hongyi. Study on the GaN film by spectroscopic ellipsometry[J]. Semiconductor Technology, 2011, 36(11): 821.

[29]

Yan Q, Rinke P, Janotti A. Effects of strain on the band structure of group-Ⅲ nitrides[J]. Phys Rev B, 2014, 90(12): 125118. doi: 10.1103/PhysRevB.90.125118

[30]

Tanaka K, Kondo T. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals[J]. Science and Technology of Advanced Materials, 2013, 4: 599.

[31]

Wang Dongpo, Li Weitu. Determining of infrared transition of InN film grown on c-plane sapphire by photoreflectance[J]. Applied Mechanics and Materials, 2012, 110: 985.

[1]

Nakamura S, Fasol G. The blue laser diode—GaN-based light emitting diode and lasers. Heidelberg: Springer-Verlag, 1997

[2]

Lorenz K, Franco N, Alves E. Relaxation of compressively strained AlInN on GaN[J]. J Cryst Growth, 2008, 310(18): 4058. doi: 10.1016/j.jcrysgro.2008.07.006

[3]

Liu Na, Yi Xiaoyan, Liang Meng. Effects of the p-AlInGaN/GaN superlattices' structure on the performance of blue LEDs[J]. Journal of Semiconductors, 2014, 35(2): 024010. doi: 10.1088/1674-4926/35/2/024010

[4]

Jing Liang, Xiao Hongling, Wang Xiaoliang. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate[J]. Journal of Semiconductors, 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004

[5]

Gan C K, Srolovitz D J. First-principles study of wurtzite InN (0001) and (0001) surfaces[J]. Phys Rev B, 2006, 74(11): 115319. doi: 10.1103/PhysRevB.74.115319

[6]

Inushima T, Mamutin V V, Vekshin V A. Physical properties of InN with the band gap energy of 1.1 eV[J]. J Cryst Growth, 2001, 227/228(01): 481.

[7]

Davydov V Y, Klochikhin A A, Seisyan R P. Absorption and emission of hexagonal InN. evidence of narrow fundamental band gap[J]. Physica Status Solidi, 2002, 229(3): r1. doi: 10.1002/(ISSN)1521-3951

[8]

Wu J, Walukiewicz W, Yu K M. Unusual properties of the fundamental band gap of InN[J]. Appl Phys Lett, 2002, 80(21): 3967. doi: 10.1063/1.1482786

[9]

Wang H, Jiang D S, Zhu J J. The influence of growth temperature and input V/Ⅲ ratio on the initial nucleation and material properties of InN on GaN by MOCVD[J]. Semicond Sci Technol, 2009, 24(5): 177.

[10]

Laskar M R, Ganguli T, Kadir A. Influence of buffer layers on the microstructure of MOVPE grown a-plane InN[J]. J Cryst Growth, 2011, 315(1): 233. doi: 10.1016/j.jcrysgro.2010.08.019

[11]

Djurišić A B, Li E H. Modeling the optical constants of hexagonal GaN, InN, and AlN[J]. J Appl Phys, 1999, 85(5): 2848. doi: 10.1063/1.369604

[12]

Yu Tongjun, Kang Xiangning, Qin Zhixin. Strain effect on photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs[J]. Journal of Semiconductors, 2006, 27(13): 20.

[13]

Tao Tao, Zhang Zhao, Liu Lian. Surface morphology and composition studies in InGaN/GaN film grown by MOCVD[J]. Journal of Semiconductors, 2011, 32(8): 083002. doi: 10.1088/1674-4926/32/8/083002

[14]

Zhou Jin, Huang Qiangcan, Li Jinchai. The InN epitaxy via controlling In bilayer[J]. Nanoscale Research Letters, 2014, 9: 5. doi: 10.1186/1556-276X-9-5

[15]

Lee J H, Lee B, Kang J H. Optical characterization of nanoporous GaN by spectroscopic ellipsometry[J]. Thin Solid Films, 2012, 525(12): 84.

[16]

Azzam R M A, Bashara N M, Burns D T, et al. Ellipsometry and polarized light. North Holland, 1987

[17]

Barshilia H C, Selvakumar N, Rajam K S. TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications[J]. Appl Phys Lett, 2006, 89(19): 191909. doi: 10.1063/1.2387897

[18]

Bhattacharyya D, Biswas A, Sahoo N K. Investigation on dispersion of optical constants of Gd2O3 films by phase modulated spectroscopic ellipsometry[J]. J Appl Phys, 2004, 233(1-4): 155.

[19]

Drévillon B. Phase modulated ellipsometry from the ultraviolet to the infrared: in situ application to the growth of semiconductors[J]. Progress in Crystal Growth & Characterization of Materials, 1993, 27(1): 1.

[20]

Xiong Y M, Snyder P G. Variable angle spectroscopic ellipsometric characterization of surface damage in chemical-mechanical polished GaAs[J]. Thin Solid Films, 1992, 220(1/2): 303.

[21]

Biswas A, Yadav B S, Bhattacharyya D. Spectroscopic ellipsometry studies of reactively sputtered nitrogen-rich GaAsN films[J]. J Non-Cryst Solids, 2011, 357(18): 3293. doi: 10.1016/j.jnoncrysol.2011.06.007

[22]

Jiang W, Lin W, Li S P. Optical anisotropy of AlN epilayer on sapphire substrate investigated by variable-angle spectroscopic ellipsometry[J]. Optical Materials, 2010, 32: 891. doi: 10.1016/j.optmat.2010.01.015

[23]

Kisielowski C. Semiconductor and Semimetals. 1998, Chap 7

[24]

Zhao Y, Wang H, Wu G G. Effect of nitridation on structure, electrical and optical properties of InN epilayers grown on sapphire by PAMBE[J]. Vacuum, 2015, 111: 15. doi: 10.1016/j.vacuum.2014.09.014

[25]

Zhao Y, Wang H, Yang H. Growth temperature induced physical property variation of InN films grown on nitrided sapphire substrate by PAMBE[J]. Vacuum, 2015, 112: 55. doi: 10.1016/j.vacuum.2014.11.016

[26]

Tanguy C, Lefebvre P, Mathieu H. Analytical model for the refractive index in quantum wells derived from the complex dielectric constant of Wannier excitons in noninteger dimensions[J]. J Appl Phys, 1997, 82: 798. doi: 10.1063/1.365580

[27]

Tanguy C. Optical dispersion by Wannier excitons[J]. Phys Rev Lett, 1995, 75: 4090. doi: 10.1103/PhysRevLett.75.4090

[28]

Yu Yangjing, Zhang Bin, Li Hongyi. Study on the GaN film by spectroscopic ellipsometry[J]. Semiconductor Technology, 2011, 36(11): 821.

[29]

Yan Q, Rinke P, Janotti A. Effects of strain on the band structure of group-Ⅲ nitrides[J]. Phys Rev B, 2014, 90(12): 125118. doi: 10.1103/PhysRevB.90.125118

[30]

Tanaka K, Kondo T. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals[J]. Science and Technology of Advanced Materials, 2013, 4: 599.

[31]

Wang Dongpo, Li Weitu. Determining of infrared transition of InN film grown on c-plane sapphire by photoreflectance[J]. Applied Mechanics and Materials, 2012, 110: 985.

[1]

J.V. Thombare, S.K. Shinde, G.M. Lohar, U.M. Chougale, S.S. Dhasade, H.D. Dhaygude, B.P. Relekar, V.J. Fulari. Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect. J. Semicond., 2014, 35(6): 063001. doi: 10.1088/1674-4926/35/6/063001

[2]

Xie Zili, Zhang Rong, Xiu Xiangqian, Bi Zhaoxia, Liu Bin, Pu Lin, Chen Dunjun, Han Ping, Gu Shulin, Jiang Ruoliang, Zhu Shunming, , Zhao Hong, Shi Yi. Characteristics of Annealing of InN Films. J. Semicond., 2006, 27(2): 340.

[3]

Sun Xian, Wang Hui, Wang Lili, Liu Wenbao, Jiang Desheng, Yang Hui. Optical Properties of InN. J. Semicond., 2007, 28(S1): 88.

[4]

Xiao Hongling, Wang Xiaoliang, Han Qin, Wang Junxi, Zhang Nanhong, Xu Yingqiang, Liu Hongxin, Zeng Yiping, Li Jinmin, Wu Ronghan. Effect of V/III Flux Ratio and Growth Temperature on Indium Droplet Formation During RF-MBE Growth of InN. J. Semicond., 2005, 26(S1): 16.

[5]

Gh. Sareminia, H. Simchi, A. Ostovari, L. Lavasanpour. Simultaneous quality improvement of the roughness and refractive index of SiC thin films. J. Semicond., 2012, 33(6): 063001. doi: 10.1088/1674-4926/33/6/063001

[6]

Zou Liner, Wang Gouri, Shen Yun, Chen Baoxue, Mamoru Iso. As2S8 planar waveguide: refractive index changes following an annealing and irradiation and annealing cycle, and light propagation features. J. Semicond., 2011, 32(11): 112004. doi: 10.1088/1674-4926/32/11/112004

[7]

Kong Jieying, Zhang Rong, Liu Bin, Xie Zili, Zhang Yong, Xiu Xiangqian, Zheng Youdou. Optical Properties of InN Films Grown by MOCVD. J. Semicond., 2007, 28(11): 1761.

[8]

Xiao Hongling, Wang Xiaoliang, Yang Cuibai, Hu Guoxin, Ran Junxue, Wang Cuimei, Zhang Xiaobin, Li Jianping, Li Jinmin. MOCVD Growth of InN Films on Sapphire Substrates. J. Semicond., 2007, 28(S1): 260.

[9]

P. Jantawongrit, S. Sanorpim, H. Yaguchi, M. Orihara, P. Limsuwan. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE. J. Semicond., 2015, 36(8): 083002. doi: 10.1088/1674-4926/36/8/083002

[10]

Lei Huaping, Jiang Xunya, Yu Guanghui, Chen J, Petit S, Ruterana P, Nouet G. Stillinger-Weber Parameters for InN:Application to InxGa1-xN. J. Semicond., 2007, 28(S1): 12.

[11]

J.O. Akinlami, A.O. Ashamu. Optical properties of GaAs. J. Semicond., 2013, 34(3): 032002. doi: 10.1088/1674-4926/34/3/032002

[12]

Wu Yuanda, Xia Junlei, An Junming, Li Jianguang, Wang Hongjie, Hu Xiongwei. Fabrication of Optical Waveguide Devices with UV-Writing Technology. J. Semicond., 2006, 27(4): 744.

[13]

Lu Feiping, Peng Yingquan, Song Chang'an, Xing Hongwei, Li Xunshuan, Yang Qingsen. Preparation and Optical Properties of 8-Hydroxylquinline Cadmium Thin Film. J. Semicond., 2007, 28(7): 1063.

[14]

Shaoxi Wang, Mingxin Wang, Xiaoya Fan, Shengbing Zhang, Ru Han. A multivariate process capability index with a spatial coefficient. J. Semicond., 2013, 34(2): 026001. doi: 10.1088/1674-4926/34/2/026001

[15]

Sheng Wang, Yun Kang, Xianli Li. Donor impurity-related optical absorption coefficients and refractive index changes in a rectangular GaAs quantum dot in the presence of electric field. J. Semicond., 2016, 37(11): 112001. doi: 10.1088/1674-4926/37/11/112001

[16]

Liu Bin, Zhang Rong, Xie Zili, Xiu Xiangqian, Li Liang, Liu Chengxiang, Han Ping, Zheng Youdou. Influence of GaN Buffer Layer for InN Growth. J. Semicond., 2006, 27(S1): 101.

[17]

Suo Kainan, Zhang Weilian, Niu Xinhuan, Jiang Zhongwei. Seebeck Coefficient of Czochralski SiGe Alloy at High Temperatures. J. Semicond., 2007, 28(S1): 16.

[18]

K S Urmila, T A Namitha, J Rajani, R R Philip, B Pradeep. Optoelectronic properties and Seebeck coefficient in SnSe thin films. J. Semicond., 2016, 37(9): 093002. doi: 10.1088/1674-4926/37/9/093002

[19]

Bowen Zhang, Xiaoling Zhang, Wenwen Xiong, Shuojie She, Xuesong Xie. The investigation of the zero temperature coefficient point of power MOSFET. J. Semicond., 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011

[20]

Wang Shaoxi, Wang Danghui. A multivariate process capability index model system. J. Semicond., 2011, 32(1): 016001. doi: 10.1088/1674-4926/32/1/016001

Search

Advanced Search >>

GET CITATION

C Y Ye, W Lin, J Zhou, S P Li, L Chen, H Li, X X Wu, S Q Liu, J Y Kang. Optical properties of InN studied by spectroscopic ellipsometry[J]. J. Semicond., 2016, 37(10): 102002. doi: 10.1088/1674-4926/37/10/102002.

Export: BibTex EndNote

Article Metrics

Article views: 593 Times PDF downloads: 17 Times Cited by: 0 Times

History

Manuscript received: 22 February 2016 Manuscript revised: 27 April 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误