J. Semicond. > Volume 37 > Issue 10 > Article Number: 103003

Persistent photoconductivity of amorphous Hg0.78Cd0.22Te: In films*

Lianjie Yu , Yuhui Su , Yanli Shi , , Xiongjun Li , Weiyan Zhao , Qi Ma , Yunjian Tai and Peng Zhao

+ Author Affilications + Find other works by these authors

PDF

Abstract: The persistent photoconductivity (PPC) of amorphous Hg0.78Cd0.22Te: In films has been studied under illumination by super-bandgap light (a He-Ne laser, hν=1.96 eV, 30 mW/cm2) and sub-bandgap light (1000 K Blackbody source, the largest photon energies hνp=0.42 eV, 8.9 mW/cm2) in the range of 80-300 K. The persistent photoconductivity effect increases with increase in illumination intensity and illumination time. However, it decreases with increase in working temperature. The non-exponential decay of photoconductivity implies the presence of continuous distribution of defect states in amorphous Hg0.78Cd0.22Te: In films. These results indicate that the decay of photoconductivity is not governed by the carrier trapped in the intrinsic defects, but it may be due to light-induced defects under light illumination.

Key words: amorphous Hg0.78Cd0.22Tepersistent photoconductivitylight-induced effects

Abstract: The persistent photoconductivity (PPC) of amorphous Hg0.78Cd0.22Te: In films has been studied under illumination by super-bandgap light (a He-Ne laser, hν=1.96 eV, 30 mW/cm2) and sub-bandgap light (1000 K Blackbody source, the largest photon energies hνp=0.42 eV, 8.9 mW/cm2) in the range of 80-300 K. The persistent photoconductivity effect increases with increase in illumination intensity and illumination time. However, it decreases with increase in working temperature. The non-exponential decay of photoconductivity implies the presence of continuous distribution of defect states in amorphous Hg0.78Cd0.22Te: In films. These results indicate that the decay of photoconductivity is not governed by the carrier trapped in the intrinsic defects, but it may be due to light-induced defects under light illumination.

Key words: amorphous Hg0.78Cd0.22Tepersistent photoconductivitylight-induced effects



References:

[1]

Mott N F, Davis E A. Electronic processes in non-crystalline materials. Oxford: Clarendon Press, 1979

[2]

Lecomber P G, Mort J. Electronic and structural properties of amorphous semiconductors. London, New York: Academic Press, 1973

[3]

Szatkowski J, Płaczek-Popko E, Fiałkowski J. Cd0.8Mn0.2Te:(In/Al)-deep level transient spectroscopy[J]. Physica B, 2000, 292: 114. doi: 10.1016/S0921-4526(00)00484-1

[4]

Szatkowski J, Płaczek-Popko E, Sierański K. Persistent photoconductivity and DLTS in indium-doped Cd0.9Mn0.1Te[J]. Physica B, 1999, 173/174: 879.

[5]

Rivera-Alvarez Z, Hernández L, Becerril M. DX centers and persistent photoconductivity in CdTe-In films[J]. Solid State Commun, 2000, 113: 621. doi: 10.1016/S0038-1098(99)00545-1

[6]

PŁaczek-Popko E, Gumienny Z, Trzmiel J. Evidence for metastable behavior of Ga-doped CdTe[J]. Optica Applicata, 2008, 38(3): 559.

[7]

Trzmiel J, PŁaczek-Popko E, Weron K. Non-exponential photoionization of the DX centers in gallium doped CdTe and Cd0.99Mn0.01Te[J]. ACTA Physica Polonica A, 2008, 114(5): 1417. doi: 10.12693/APhysPolA.114.1417

[8]

Trzmiel J, Placzek-Popko E, Nowak A. On the stretchedexponential decay kinetics of the ionized DX centers in gallium doped Cd1-xMnxTe[J]. Physica B, 2009, 404: 5251. doi: 10.1016/j.physb.2009.08.289

[9]

Iovu M S, Shutov S D, Toth L. Transient photocurrents under optical bias in time-of-flight experiment with amorphous films of As2Se3:Sn and As2S3:Sb2S3[J]. Phys Stat Sol (b), 1996, 195: 149. doi: 10.1002/(ISSN)1521-3951

[10]

Harea D V, Vasilev I A, Colomeico E P. Persistent photoconductivity in amorphous As2Se3 films with Sn impurity[J]. J Optoelectron Adv Mater, 2003, 5(5): 1115.

[11]

Bouhdjar S F, Ayat L, Meftah A M. Computer modelling and analysis of the photodegradation effect in a-Si:H p-i-n solar cell[J]. Journal of Semiconductors, 2015, 36(1): 014002. doi: 10.1088/1674-4926/36/1/014002

[12]

Zhang Minglan, Yang Ruixia, Liu Naixin. Persistent photoconductivity in neutron irradiated GaN[J]. Journal of Semiconductors, 2013, 34(9): 093005. doi: 10.1088/1674-4926/34/9/093005

[13]

Pal R K, Agnihotri A K, Kumar A. Persistent photoconductivity in amorphous Se–Te–Zn system[J]. Chalcogenide Letters, 2010, 7(6): 439.

[14]

Singh S, Sharma R S, Shukla R K. Photoconductivity in a-Se90Ge10-xInx thin films[J]. Vacuum, 2004, 72: 1.

[15]

Chadi D J, Park C H. Electronic properties of hydrogen-derived complexes in silicon[J]. Phys Rev B, 1995, 52: 8877. doi: 10.1103/PhysRevB.52.8877

[16]

Thio T, Bennett J W, Chadi D J. DX centers in II–VI semiconductors and heterojunctions[J]. J Electron Mater, 1996, 25: 229. doi: 10.1007/BF02666249

[17]

Lin J Y, Jiang H X. Relaxation of stored charge carriers in a Zn0.3Cd0.7Se mixed crystal[J]. Phys Rev B, 1990, 41: 5178. doi: 10.1103/PhysRevB.41.5178

[18]

Fuhs W, Meyer D. Recombination in amorphous arsenic triselenide[J]. Phys Stat Sol (a), 1974, 24: 275. doi: 10.1002/(ISSN)1521-396X

[19]

Street R A, Mott N F. States in the gap in glassy semiconductors[J]. Phys Rev Lett, 1975, 35: 1293. doi: 10.1103/PhysRevLett.35.1293

[20]

Kumeda M, Kawachi G, Shimizu T. Photoconductivity and photoluminescence and their relation to light-induced ESR in (Ge0:42S0:58/1-x(Sb0.4S0.6)x glasses[J]. Philos Mag B, 1985, 51(6): 591. doi: 10.1080/13642818508243150

[21]

Shimakawa K, Yano Y, Katsuma Y. Origin of the non-exponential photocurrent decay in amorphous semiconductors[J]. Philos Mag B, 1986, 54(4): 285. doi: 10.1080/13642818608239029

[22]

Dixit M, Dwivedi S K, Kumar A. Effect of photocrystallization on the photoconductivity of a-Se80Te20[J]. Thin Solid Films, 1998, 333(1/2): 165.

[23]

Lang D V, Logan R A, Jaros M. Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1-xAs[J]. Phys Rev B, 1979, 19: 1015. doi: 10.1103/PhysRevB.19.1015

[24]

Mooney P M. Deep donor levels (D X centers) in III–V semiconductors[J]. J Appl Phys, 1990, 67: R1. doi: 10.1063/1.345628

[25]

Placzek-Popko E, Becla P. Metastable defect characterization in Cd0.9Mn0.1Te:In[J]. Physica B, 2001, 308-310: 954. doi: 10.1016/S0921-4526(01)00886-9

[26]

Terry I, Penney T, Molnár S von. Band tails and the insulator–metal transition in the persistent photoconductor Cd1-xMnxTe:In[J]. Solid State Commun, 1992, 84(1/2): 235.

[27]

Chadi D J, Chang K J. Theory of the atomic and electronic structure of DX centers in GaAs and AlxGa1-xAs alloys[J]. Phys Rev Lett, 1988, 61(7): 873. doi: 10.1103/PhysRevLett.61.873

[28]

Park C H, Chadi D J. Pressure dependence of deep centers in II– VI semiconductors: theory[J]. Journal of Physics and Chemistry of Solids, 1995, 56(3/4): 585.

[29]

Wasik D, Przybytek J, Baj M. Hydrostatic pressure study of indium DX-like centers in MBE-grown CdTe and CdMnTe layers[J]. J Cryst Growth, 1996, 159(1-4): 392. doi: 10.1016/0022-0248(95)00688-5

[30]

Yu Lianjie, Shi Yanli, Li Xiongjun. Effect of thermal annealing on the steady state photoconductivity of amorphous HgCdTe thin films[J]. Journal of Optoelectronics·Laser, 2012, 23(4): 735.

[31]

Yu Lianjie, Shi Yanli, He Wenjin. Relationship between dark conductivity and temperature for amorphous HgCdTe films[J]. Proc of SPIE, 2009, 7383: 73833N. doi: 10.1117/12.836568

[32]

Yu Lianjie, Shi Yanli, Zhuang Jisheng. The modulated photocurrent of amorphous HgCdTe thin films[J]. Proc SPIE, 2011, 8193: 819341. doi: 10.1117/12.900987

[33]

Wang Guanghua, Kong Jincheng, Li Xiongjun. Effect of power variation on microstructure and surface morphology of HgCdTe films deposited by RF magnetron sputtering[J]. Journal of Semiconductors, 2010, 31(5): 053004. doi: 10.1088/1674-4926/31/5/053004

[34]

Kong Jincheng, Kong Lingde, Zhao Jun. Structural and optical properties of amorphous MCT films deposited by RF magnetron sputtering[J]. Journal of Semiconductors, 2008, 29(4): 733.

[35]

Li Xiongjun, Kong Jincheng, Wang Guanghua. The effect of annealing on the microstructure and photosensitivity of amorphous HgCdTe films[J]. Infrared Technology, 2010, 32(5): 255.

[36]

Qiu Feng, Xiang Jinzhong, Kong Jincheng. Dark conductivity and photoconductivity of amorphous Hg0.78Cd0.22Te thin films[J]. Journal of Semiconductors, 2011, 32(3): 033004. doi: 10.1088/1674-4926/32/3/033004

[37]

Shimakawa K. Residual photocurrent decay in amorphous chalcogenides[J]. J Non-Cryst Solids, 1985, 77/78: 1253. doi: 10.1016/0022-3093(85)90885-3

[38]

Mehra R M, Kaur G, Mathur P C. Effect of antimony impurity on photoconduction in thin films of Se–Te system[J]. Solid State Commun, 1993, 85(1): 29. doi: 10.1016/0038-1098(93)90912-7

[1]

Mott N F, Davis E A. Electronic processes in non-crystalline materials. Oxford: Clarendon Press, 1979

[2]

Lecomber P G, Mort J. Electronic and structural properties of amorphous semiconductors. London, New York: Academic Press, 1973

[3]

Szatkowski J, Płaczek-Popko E, Fiałkowski J. Cd0.8Mn0.2Te:(In/Al)-deep level transient spectroscopy[J]. Physica B, 2000, 292: 114. doi: 10.1016/S0921-4526(00)00484-1

[4]

Szatkowski J, Płaczek-Popko E, Sierański K. Persistent photoconductivity and DLTS in indium-doped Cd0.9Mn0.1Te[J]. Physica B, 1999, 173/174: 879.

[5]

Rivera-Alvarez Z, Hernández L, Becerril M. DX centers and persistent photoconductivity in CdTe-In films[J]. Solid State Commun, 2000, 113: 621. doi: 10.1016/S0038-1098(99)00545-1

[6]

PŁaczek-Popko E, Gumienny Z, Trzmiel J. Evidence for metastable behavior of Ga-doped CdTe[J]. Optica Applicata, 2008, 38(3): 559.

[7]

Trzmiel J, PŁaczek-Popko E, Weron K. Non-exponential photoionization of the DX centers in gallium doped CdTe and Cd0.99Mn0.01Te[J]. ACTA Physica Polonica A, 2008, 114(5): 1417. doi: 10.12693/APhysPolA.114.1417

[8]

Trzmiel J, Placzek-Popko E, Nowak A. On the stretchedexponential decay kinetics of the ionized DX centers in gallium doped Cd1-xMnxTe[J]. Physica B, 2009, 404: 5251. doi: 10.1016/j.physb.2009.08.289

[9]

Iovu M S, Shutov S D, Toth L. Transient photocurrents under optical bias in time-of-flight experiment with amorphous films of As2Se3:Sn and As2S3:Sb2S3[J]. Phys Stat Sol (b), 1996, 195: 149. doi: 10.1002/(ISSN)1521-3951

[10]

Harea D V, Vasilev I A, Colomeico E P. Persistent photoconductivity in amorphous As2Se3 films with Sn impurity[J]. J Optoelectron Adv Mater, 2003, 5(5): 1115.

[11]

Bouhdjar S F, Ayat L, Meftah A M. Computer modelling and analysis of the photodegradation effect in a-Si:H p-i-n solar cell[J]. Journal of Semiconductors, 2015, 36(1): 014002. doi: 10.1088/1674-4926/36/1/014002

[12]

Zhang Minglan, Yang Ruixia, Liu Naixin. Persistent photoconductivity in neutron irradiated GaN[J]. Journal of Semiconductors, 2013, 34(9): 093005. doi: 10.1088/1674-4926/34/9/093005

[13]

Pal R K, Agnihotri A K, Kumar A. Persistent photoconductivity in amorphous Se–Te–Zn system[J]. Chalcogenide Letters, 2010, 7(6): 439.

[14]

Singh S, Sharma R S, Shukla R K. Photoconductivity in a-Se90Ge10-xInx thin films[J]. Vacuum, 2004, 72: 1.

[15]

Chadi D J, Park C H. Electronic properties of hydrogen-derived complexes in silicon[J]. Phys Rev B, 1995, 52: 8877. doi: 10.1103/PhysRevB.52.8877

[16]

Thio T, Bennett J W, Chadi D J. DX centers in II–VI semiconductors and heterojunctions[J]. J Electron Mater, 1996, 25: 229. doi: 10.1007/BF02666249

[17]

Lin J Y, Jiang H X. Relaxation of stored charge carriers in a Zn0.3Cd0.7Se mixed crystal[J]. Phys Rev B, 1990, 41: 5178. doi: 10.1103/PhysRevB.41.5178

[18]

Fuhs W, Meyer D. Recombination in amorphous arsenic triselenide[J]. Phys Stat Sol (a), 1974, 24: 275. doi: 10.1002/(ISSN)1521-396X

[19]

Street R A, Mott N F. States in the gap in glassy semiconductors[J]. Phys Rev Lett, 1975, 35: 1293. doi: 10.1103/PhysRevLett.35.1293

[20]

Kumeda M, Kawachi G, Shimizu T. Photoconductivity and photoluminescence and their relation to light-induced ESR in (Ge0:42S0:58/1-x(Sb0.4S0.6)x glasses[J]. Philos Mag B, 1985, 51(6): 591. doi: 10.1080/13642818508243150

[21]

Shimakawa K, Yano Y, Katsuma Y. Origin of the non-exponential photocurrent decay in amorphous semiconductors[J]. Philos Mag B, 1986, 54(4): 285. doi: 10.1080/13642818608239029

[22]

Dixit M, Dwivedi S K, Kumar A. Effect of photocrystallization on the photoconductivity of a-Se80Te20[J]. Thin Solid Films, 1998, 333(1/2): 165.

[23]

Lang D V, Logan R A, Jaros M. Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1-xAs[J]. Phys Rev B, 1979, 19: 1015. doi: 10.1103/PhysRevB.19.1015

[24]

Mooney P M. Deep donor levels (D X centers) in III–V semiconductors[J]. J Appl Phys, 1990, 67: R1. doi: 10.1063/1.345628

[25]

Placzek-Popko E, Becla P. Metastable defect characterization in Cd0.9Mn0.1Te:In[J]. Physica B, 2001, 308-310: 954. doi: 10.1016/S0921-4526(01)00886-9

[26]

Terry I, Penney T, Molnár S von. Band tails and the insulator–metal transition in the persistent photoconductor Cd1-xMnxTe:In[J]. Solid State Commun, 1992, 84(1/2): 235.

[27]

Chadi D J, Chang K J. Theory of the atomic and electronic structure of DX centers in GaAs and AlxGa1-xAs alloys[J]. Phys Rev Lett, 1988, 61(7): 873. doi: 10.1103/PhysRevLett.61.873

[28]

Park C H, Chadi D J. Pressure dependence of deep centers in II– VI semiconductors: theory[J]. Journal of Physics and Chemistry of Solids, 1995, 56(3/4): 585.

[29]

Wasik D, Przybytek J, Baj M. Hydrostatic pressure study of indium DX-like centers in MBE-grown CdTe and CdMnTe layers[J]. J Cryst Growth, 1996, 159(1-4): 392. doi: 10.1016/0022-0248(95)00688-5

[30]

Yu Lianjie, Shi Yanli, Li Xiongjun. Effect of thermal annealing on the steady state photoconductivity of amorphous HgCdTe thin films[J]. Journal of Optoelectronics·Laser, 2012, 23(4): 735.

[31]

Yu Lianjie, Shi Yanli, He Wenjin. Relationship between dark conductivity and temperature for amorphous HgCdTe films[J]. Proc of SPIE, 2009, 7383: 73833N. doi: 10.1117/12.836568

[32]

Yu Lianjie, Shi Yanli, Zhuang Jisheng. The modulated photocurrent of amorphous HgCdTe thin films[J]. Proc SPIE, 2011, 8193: 819341. doi: 10.1117/12.900987

[33]

Wang Guanghua, Kong Jincheng, Li Xiongjun. Effect of power variation on microstructure and surface morphology of HgCdTe films deposited by RF magnetron sputtering[J]. Journal of Semiconductors, 2010, 31(5): 053004. doi: 10.1088/1674-4926/31/5/053004

[34]

Kong Jincheng, Kong Lingde, Zhao Jun. Structural and optical properties of amorphous MCT films deposited by RF magnetron sputtering[J]. Journal of Semiconductors, 2008, 29(4): 733.

[35]

Li Xiongjun, Kong Jincheng, Wang Guanghua. The effect of annealing on the microstructure and photosensitivity of amorphous HgCdTe films[J]. Infrared Technology, 2010, 32(5): 255.

[36]

Qiu Feng, Xiang Jinzhong, Kong Jincheng. Dark conductivity and photoconductivity of amorphous Hg0.78Cd0.22Te thin films[J]. Journal of Semiconductors, 2011, 32(3): 033004. doi: 10.1088/1674-4926/32/3/033004

[37]

Shimakawa K. Residual photocurrent decay in amorphous chalcogenides[J]. J Non-Cryst Solids, 1985, 77/78: 1253. doi: 10.1016/0022-3093(85)90885-3

[38]

Mehra R M, Kaur G, Mathur P C. Effect of antimony impurity on photoconduction in thin films of Se–Te system[J]. Solid State Commun, 1993, 85(1): 29. doi: 10.1016/0038-1098(93)90912-7

[1]

Minglan Zhang, Ruixia Yang, Naixin Liu, Xiaoliang Wang. Persistent photoconductivity in neutron irradiated GaN. J. Semicond., 2013, 34(9): 093005. doi: 10.1088/1674-4926/34/9/093005

[2]

Su Zhiguo, Xu Jintong, Chen Jun, Li Xiangyang, Liu Ji, Zhao Degang. Negative Persistent Photoconductivity in Unintentionally Doped n-Type GaN. J. Semicond., 2007, 28(6): 878.

[3]

Qiu Feng, Xiang Jinzhong, Kong Jincheng, Yu Lianjie, Kong Lingde, Wang Guanghua, Li Xiongjun, Yang Lili, Li Cong, Ji Rongbin. Dark conductivity and photoconductivity of amorphous Hg0.78Cd0.22Te thin films. J. Semicond., 2011, 32(3): 033004. doi: 10.1088/1674-4926/32/3/033004

[4]

Huang Kai, Lü Jianguo, Zhang Li, Tang Zhen, Yu Jiangying, Li Ping, Liu Feng. Effect of magnesium doping on the light-induced hydrophilicity of ZnO thin films. J. Semicond., 2012, 33(5): 053003. doi: 10.1088/1674-4926/33/5/053003

[5]

Xing Zhao, Jia Rui, Ding Wuchang, Meng Yanlong, Jin Zhi, Liu Xinyu. Improving poor fill factors for solar cells via light-induced plating. J. Semicond., 2012, 33(9): 094008. doi: 10.1088/1674-4926/33/9/094008

[6]

A. V. Shestakov, I. I. Fazlizhanov, I. V. Yatsyk, I. F. Gilmutdinov, M. I. Ibragimova, V. A. Shustov, R. M. Eremina. The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands. J. Semicond., 2018, 39(5): 052001. doi: 10.1088/1674-4926/39/5/052001

[7]

Pengfei Wang, Ruihua Nan, Zengyun Jian. The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals. J. Semicond., 2017, 38(6): 062002. doi: 10.1088/1674-4926/38/6/062002

[8]

Feng Liang, Benling Gao, Jun Zhang, Yu Gu. Controllable persistent spin-polarized charge current in a Rashba ring. J. Semicond., 2017, 38(8): 082002. doi: 10.1088/1674-4926/38/8/082002

[9]

Du Jian, Wang Suxin, Pan Jianghong, Duan Xiuzhi. Persistent spin currents in a triple-terminal quantum ring with three arms. J. Semicond., 2011, 32(4): 042002. doi: 10.1088/1674-4926/32/4/042002

[10]

Zhang Jijun, Jie Wanqi. Growth and Properties of Cd0.8Mn0.2Te Crystal. J. Semicond., 2006, 27(6): 1026.

[11]

Song Xiaowei, Li Jianjun, Han Jun, Deng Jun, Chen Yixin, Sun Hao, Jiang Wenjing, Shen Guangdi. Effects of Surface Texture on the Light Emission of Red LEDs. J. Semicond., 2008, 29(7): 1365.

[12]

Li Juan, Liu Ning, Luo Chong, Meng Zhiguo, Xiong Shaozhen, Hoi Sing Kwok. H-plasma-assisted aluminum induced crystallization of amorphous silicon. J. Semicond., 2012, 33(6): 066003. doi: 10.1088/1674-4926/33/6/066003

[13]

Zhou Shouli, Cui Hailin, Huang Yongqing, Ren Xiaomin. Effects of Bandgap Narrowing Induced by heavy Doping in Abrupt HBTs on Their Currents. J. Semicond., 2006, 27(1): 110.

[14]

V.K. Dwivedi, P. Srivastava, G. Vijaya Prakash. Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication. J. Semicond., 2013, 34(3): 033001. doi: 10.1088/1674-4926/34/3/033001

[15]

Wang Chenglong, Fan Duowang, Sun Shuo, Zhang Fujia. An Experimental Study of Aluminum-Induced Crystallization of Amorphous Silicon Thin Film in Different Atmospheres. J. Semicond., 2008, 29(8): 1544.

[16]

Xue Wu, Wu Lu, Yiyuan Wang, Jialing Xu, Leqing Zhang, Jian Lu, Xin Yu, Xingyao Zhang, Tianle Hu. Total ionizing dose effects on a radiation-induced BiMOS analog-to-digital converter. J. Semicond., 2013, 34(1): 015006. doi: 10.1088/1674-4926/34/1/015006

[17]

Xinhai Yu, Changchun Chai, Xingrong Ren, Yintang Yang, Xiaowen Xi, Yang Liu. Temperature dependence of latch-up effects in CMOS inverter induced by high power microwave. J. Semicond., 2014, 35(8): 084011. doi: 10.1088/1674-4926/35/8/084011

[18]

Anlin He, Gang Guo, Shuting Shi, Dongjun Shen, Jiancheng Liu, Li Cai, Hui Fan. Experimental research of heavy ion and proton induced single event effects for a Bi-CMOS technology DC/DC converter. J. Semicond., 2015, 36(11): 115010. doi: 10.1088/1674-4926/36/11/115010

[19]

Wu Xiaoli, Wang Nili, Zhang Kefeng, Tang Hengjing, Huang Yimin, Han Bing, Li Xue, Gong Haimei. Microwave Photoconductivity Decay (μ-PCD) Characterization and Mechanism of p-InP/n-InGaAs/n-InP Double Heterojunction Material. J. Semicond., 2007, 28(11): 1769.

[20]

Aodong He, Bo Liu, Zhitang Song, Yegang Lü, Juntao Li, Weili Liu, Songlin Feng, Guanping Wu. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad. J. Semicond., 2013, 34(7): 076002. doi: 10.1088/1674-4926/34/7/076002

Search

Advanced Search >>

GET CITATION

L J Yu, Y H Su, Y L Shi, X J Li, W Y Zhao, Q Ma, Y J Tai, P Zhao. Persistent photoconductivity of amorphous Hg0.78Cd0.22Te: In films*[J]. J. Semicond., 2016, 37(10): 103003. doi: 10.1088/1674-4926/37/10/103003.

Export: BibTex EndNote

Article Metrics

Article views: 698 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 04 May 2016 Manuscript revised: 12 June 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误