J. Semicond. > Volume 37 > Issue 10 > Article Number: 105002

Load adaptive start-up scheme for synchronous boost DC-DC converter

Guoding Dai 1, 2, , , Wenliang Xiu 1, , Yuezhi Liu 1, , Yawei Qi 1, and Zuqi Dong 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper presents a load adaptive soft-start scheme through which the inductor current of the synchronous boost DC-DC converter can trace the load current at the start-up stage. This scheme effectively eliminates the inrush-current and over-shoot voltage and improves the load capability of the converter. According to the output voltage, the start-up process is divided into three phases and at each phase the inductor current is limited to match the load. In the pre-charge phase, a step-increasing constant current gives a smooth rise of the output voltage which avoids inrush current and ensures the converter successfully starts up at different load situations. An additional ring oscillator operation phase enables the converter to start up as low as 1.4 V. When the converter enters into the system loop soft-start phase, an output voltage and inductor current detection methods make the transition of the phases smooth and the inductor current and output voltage rise steadily. Effective protection circuits such as short-circuit protection, current limit circuit and over-temperature protection circuit are designed to guarantee the safety and reliability of the chip during the start-up process. The proposed start-up circuit is implemented in a synchronous boost DC-DC converter based on TSMC 0.35μm CMOS process with an input voltage range 1.4-4.2 V, and a steady output voltage 5 V, and the switching frequency is 1 MHz. Simulation results show that inrush current and overshoot voltage are suppressed with a load range from 0-2.1 A, and inductor current is as low as 259 mA when the output shorts to the ground.

Key words: load adaptivesoft-start schemesynchronous boost DC-DC converter

Abstract: This paper presents a load adaptive soft-start scheme through which the inductor current of the synchronous boost DC-DC converter can trace the load current at the start-up stage. This scheme effectively eliminates the inrush-current and over-shoot voltage and improves the load capability of the converter. According to the output voltage, the start-up process is divided into three phases and at each phase the inductor current is limited to match the load. In the pre-charge phase, a step-increasing constant current gives a smooth rise of the output voltage which avoids inrush current and ensures the converter successfully starts up at different load situations. An additional ring oscillator operation phase enables the converter to start up as low as 1.4 V. When the converter enters into the system loop soft-start phase, an output voltage and inductor current detection methods make the transition of the phases smooth and the inductor current and output voltage rise steadily. Effective protection circuits such as short-circuit protection, current limit circuit and over-temperature protection circuit are designed to guarantee the safety and reliability of the chip during the start-up process. The proposed start-up circuit is implemented in a synchronous boost DC-DC converter based on TSMC 0.35μm CMOS process with an input voltage range 1.4-4.2 V, and a steady output voltage 5 V, and the switching frequency is 1 MHz. Simulation results show that inrush current and overshoot voltage are suppressed with a load range from 0-2.1 A, and inductor current is as low as 259 mA when the output shorts to the ground.

Key words: load adaptivesoft-start schemesynchronous boost DC-DC converter



References:

[1]

Man T Y, Mok P K T, Chan M J. A 0.9 V input discontinuous conduction mode boost converter with CMOS-control rectifier[J]. IEEE J Solid-State Circuits, 2008, 43(9): 2036. doi: 10.1109/JSSC.2008.2001933

[2]

Hsieh C Y, Chuang Y C, Chen K H. A novel precise step-shaped soft-start technique for integrated DC-DC converter[J]. IEEE 14th International Conference on Electronics, Circuits and Systems, 2007: 771.

[3]

Le H P, Chae C S, Lee K C. A single-inductor switching DC-DC converter with five outputs and ordered power-distributive control[J]. IEEE J Solid-State Circuits, 2008, 42(12): 2706.

[4]

Lion W R, Yeh M L. Monolithic low-EMI CMOS DC-DC boost converter for portable applications[J]. IEEE Trans Very Large Scale Integr Syst, 2014, 22(2): 420. doi: 10.1109/TVLSI.2013.2243927

[5]

Liou W R, Chen P H, Tzeng J C. A synchronous boost regulator with PWM/PFM mode operation[J]. IEEE 8th International Conference on ASIC, 2009: 1066.

[6]

Shibata K, Lee H. A DC-DC converter using a high speed soft-start control circuit[J]. IEEE International Symposium on Circuits and Systems, 2010, 109(2): 833.

[7]

Shyoukh M A, Lee H. A compact fully-integrated extremum-selector-based soft-start circuit for voltage regulators in bulk CMOS technologies[J]. IEEE Trans Circuits Syst II, 2010, 57(10): 818. doi: 10.1109/TCSII.2010.2058597

[8]

Analog Devices Incorporated. 650 KHz/1.3 MHz step-up PWM DC-to-DC switching converter with 2.0 A current limit. Analog Devices Incorporated Datasheet ADP1613, available online in http://www.analog.com/media/en/technical-documentation/data-sheets/ADP1612_1613.pdf

[9]

Yang Weidong, Zang Jiandong, Li Tiehu. A 16 b 2 GHz digital-to-analog converter in 0.18 μm CMOS with digital calibration technology[J]. Journal of Semiconductors, 2015, 36(10): 105002. doi: 10.1088/1674-4926/36/10/105002

[10]

Wang Qing, Chen Ning, Xu Shen. A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters[J]. Journal of Semiconductors, 2014, 35(9): 095010. doi: 10.1088/1674-4926/35/9/095010

[11]

Texas Instrument Incorporated. High voltage DC/DC boost converter with 0.5-A/1.3-A integrated switch. Texas Instrument Incorporated Datasheet TPS61081, available online in http://www.ti.com/lit/gpn/tps61086.pdf

[12]

Monolithic Power System Incorporated. 1.3 A fixed frequency white LED driver. Monolithic Power System Incorporated Datasheet MPS3202, available online in http://space.ednchina.com/ewebeditor/uploadfile/20110705085426780.pdf

[13]

Ribellino C, Milazzo P. Switch-type voltage regulator with reduction of occupied space for soft-start functions. United States Patent, 2003/6552517, 2003

[1]

Man T Y, Mok P K T, Chan M J. A 0.9 V input discontinuous conduction mode boost converter with CMOS-control rectifier[J]. IEEE J Solid-State Circuits, 2008, 43(9): 2036. doi: 10.1109/JSSC.2008.2001933

[2]

Hsieh C Y, Chuang Y C, Chen K H. A novel precise step-shaped soft-start technique for integrated DC-DC converter[J]. IEEE 14th International Conference on Electronics, Circuits and Systems, 2007: 771.

[3]

Le H P, Chae C S, Lee K C. A single-inductor switching DC-DC converter with five outputs and ordered power-distributive control[J]. IEEE J Solid-State Circuits, 2008, 42(12): 2706.

[4]

Lion W R, Yeh M L. Monolithic low-EMI CMOS DC-DC boost converter for portable applications[J]. IEEE Trans Very Large Scale Integr Syst, 2014, 22(2): 420. doi: 10.1109/TVLSI.2013.2243927

[5]

Liou W R, Chen P H, Tzeng J C. A synchronous boost regulator with PWM/PFM mode operation[J]. IEEE 8th International Conference on ASIC, 2009: 1066.

[6]

Shibata K, Lee H. A DC-DC converter using a high speed soft-start control circuit[J]. IEEE International Symposium on Circuits and Systems, 2010, 109(2): 833.

[7]

Shyoukh M A, Lee H. A compact fully-integrated extremum-selector-based soft-start circuit for voltage regulators in bulk CMOS technologies[J]. IEEE Trans Circuits Syst II, 2010, 57(10): 818. doi: 10.1109/TCSII.2010.2058597

[8]

Analog Devices Incorporated. 650 KHz/1.3 MHz step-up PWM DC-to-DC switching converter with 2.0 A current limit. Analog Devices Incorporated Datasheet ADP1613, available online in http://www.analog.com/media/en/technical-documentation/data-sheets/ADP1612_1613.pdf

[9]

Yang Weidong, Zang Jiandong, Li Tiehu. A 16 b 2 GHz digital-to-analog converter in 0.18 μm CMOS with digital calibration technology[J]. Journal of Semiconductors, 2015, 36(10): 105002. doi: 10.1088/1674-4926/36/10/105002

[10]

Wang Qing, Chen Ning, Xu Shen. A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters[J]. Journal of Semiconductors, 2014, 35(9): 095010. doi: 10.1088/1674-4926/35/9/095010

[11]

Texas Instrument Incorporated. High voltage DC/DC boost converter with 0.5-A/1.3-A integrated switch. Texas Instrument Incorporated Datasheet TPS61081, available online in http://www.ti.com/lit/gpn/tps61086.pdf

[12]

Monolithic Power System Incorporated. 1.3 A fixed frequency white LED driver. Monolithic Power System Incorporated Datasheet MPS3202, available online in http://space.ednchina.com/ewebeditor/uploadfile/20110705085426780.pdf

[13]

Ribellino C, Milazzo P. Switch-type voltage regulator with reduction of occupied space for soft-start functions. United States Patent, 2003/6552517, 2003

[1]

Chunhong Zhang, Haigang Yang, Richard Shi. A wide load range, multi-mode synchronous buck DC-DC converter with a dynamic mode controller and adaptive slope compensation. J. Semicond., 2013, 34(6): 065003. doi: 10.1088/1674-4926/34/6/065003

[2]

Jie Li, Miao Yang, Weifeng Sun, Xiaoxia Lu, Shen Xu, Shengli Lu. A fast novel soft-start circuit for peak current-mode DC-DC buck converters. J. Semicond., 2013, 34(2): 025006. doi: 10.1088/1674-4926/34/2/025006

[3]

Li Yanming, Lai Xinquan, Yuan Bing, Ye Qiang, Jia Xinzhang. An On-Chip Soft-Start Circuit for DC-DC Switching Regulators. J. Semicond., 2008, 29(6): 1210.

[4]

Ling Yang, Guoding Dai, Chongwei Xu, Yuezhi Liu. A current-mode DC-DC buck converter with adaptive zero compensation. J. Semicond., 2013, 34(8): 085012. doi: 10.1088/1674-4926/34/8/085012

[5]

Jinguang Jiang, Fei Huang, Zhihui Xiong. Adaptive switching frequency buck DC-DC converter with high-accuracy on-chip current sensor. J. Semicond., 2015, 36(5): 055005. doi: 10.1088/1674-4926/36/5/055005

[6]

Yajun Li, Xinquan Lai, Qiang Ye, Bing Yuan. High efficiency and low electromagnetic interference boost DC-DC converter. J. Semicond., 2014, 35(4): 045002. doi: 10.1088/1674-4926/35/4/045002

[7]

Wang Hongyi, Lai Xinquan, Li Yushan. Reducing the Slope Compensation Effect on the Load Capacity of DC-DC Converters. J. Semicond., 2006, 27(8): 1484.

[8]

Li Yanming, Lai Xinquan, Yuan Bing, Jia Xinzhang, Zhang Wei, Ye Qiang. Design and Implementation of a Buck DC-DC Controller with Adaptive On-Time Control. J. Semicond., 2008, 29(7): 1396.

[9]

Yuan Bing, Lai Xinquan, Li Yanming, Ye Qiang, Jia Xinzhang. Design of an On-Chip Soft-Start Circuit Integrated in Buck Regulators. J. Semicond., 2008, 29(10): 2069.

[10]

Guo Zhongjie, Wu Longsheng, Liu Youbao, Zhang Qian. A novel embedded soft-start circuit for SOC power supply. J. Semicond., 2010, 31(5): 055012. doi: 10.1088/1674-4926/31/5/055012

[11]

Jinguang Jiang, Gaojian Tan, Zeyu Zhang, Xifeng Zhou. A novel dimmable LED driver with soft-start and UVLO circuits. J. Semicond., 2015, 36(2): 025004. doi: 10.1088/1674-4926/36/2/025004

[12]

Pi Changming, Yan Wei, Zhang Ke, Li Wenhong. DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC–DC converter over a wide load range. J. Semicond., 2010, 31(8): 085003. doi: 10.1088/1674-4926/31/8/085003

[13]

Zhang Zhang, Xing Wang, Wencheng Yu, Ye Tan, Yizhong Yang, Guangjun Xie. 50 MHz dual-mode buck DC-DC converter. J. Semicond., 2016, 37(8): 085002. doi: 10.1088/1674-4926/37/8/085002

[14]

Guo Zhongjie, Wu Longsheng, Liu Youbao. Design and implementation of adaptive slope compensation in current mode DC–DC onverter. J. Semicond., 2010, 31(12): 125004. doi: 10.1088/1674-4926/31/12/125004

[15]

Liu Zhi, Ning Hongying, Yu Hongbo, Liu Youbao. Design of a total-dose radiation hardened monolithic CMOS DC–DC boost converter. J. Semicond., 2011, 32(7): 075006. doi: 10.1088/1674-4926/32/7/075006

[16]

Dongfang Pan, Feng Zhang, Lu Huang, Jinliang Li. A common-gate bootstrapped CMOS rectifier for VHF isolated DC-DC converter. J. Semicond., 2017, 38(5): 055002. doi: 10.1088/1674-4926/38/5/055002

[17]

Chen Dongpo, He Lenian, Yan Xiaolang. A Current-Mode DC-DC Buck Converter with High Stability and Fast Dynamic Response. J. Semicond., 2006, 27(10): 1742.

[18]

Yuan Bing, Lai Xinquan, Li Yanming, Ye Qiang, Wang Hongyi, Jia Xinzhang. High Efficiency Realization of a DC-DC Converter at Light Loads for Portable Applications. J. Semicond., 2008, 29(6): 1198.

[19]

Shiquan Fan, Zhongming Xue, Hao Lu, Hui Zhao, Li Geng. A novel buck/LDO dual-mode DC-DC converter for efficiency improvement. J. Semicond., 2013, 34(10): 105002. doi: 10.1088/1674-4926/34/10/105002

[20]

Tian Xin, Liu Xiangxin, Li Wenhong. A dual VCDL DLL based gate driver for zero-voltage-switching DC-DC converter. J. Semicond., 2010, 31(7): 075012. doi: 10.1088/1674-4926/31/7/075012

Search

Advanced Search >>

GET CITATION

G D Dai, W L Xiu, Y Z Liu, Y W Qi, Z Q Dong. Load adaptive start-up scheme for synchronous boost DC-DC converter[J]. J. Semicond., 2016, 37(10): 105002. doi: 10.1088/1674-4926/37/10/105002.

Export: BibTex EndNote

Article Metrics

Article views: 617 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 04 November 2015 Manuscript revised: 26 April 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误