J. Semicond. > Volume 37 > Issue 3 > Article Number: 034006

Current mechanism and band alignment of Al(Pt)/HfGdO/Ge capacitors

Junjun Yuan 1, 2, , Zebo Fang 2, , , Yanyan Zhu 1, , , Bo Yao 2, , Shiyan Liu 2, , Gang He 3, and Yongsheng Tan 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: HfGdO high-k gate dielectric thin films were deposited on Ge substrates by radio-frequency magnetron sputtering. The current transport properties of Al(Pt)/HfGdO/Ge MOS structures were investigated at room temperature. The results show that the leakage currents are mainly induced by Frenkel-Poole emissions at a low electric field. At a high electric field, Fowler Nordheim tunneling dominates the current. The energy barriers were obtained by analyzing the Fowler Nordheim tunneling characteristics, which are 1.62 eV and 2.77 eV for Al/HfGdO and Pt/HfGdO, respectively. The energy band alignments for metal/HfGdO/Ge capacitors are summarized together with the results of current-voltage and the x-ray photoelectron spectroscopy.

Key words: high-k filmleakage currentcharge conduction

Abstract: HfGdO high-k gate dielectric thin films were deposited on Ge substrates by radio-frequency magnetron sputtering. The current transport properties of Al(Pt)/HfGdO/Ge MOS structures were investigated at room temperature. The results show that the leakage currents are mainly induced by Frenkel-Poole emissions at a low electric field. At a high electric field, Fowler Nordheim tunneling dominates the current. The energy barriers were obtained by analyzing the Fowler Nordheim tunneling characteristics, which are 1.62 eV and 2.77 eV for Al/HfGdO and Pt/HfGdO, respectively. The energy band alignments for metal/HfGdO/Ge capacitors are summarized together with the results of current-voltage and the x-ray photoelectron spectroscopy.

Key words: high-k filmleakage currentcharge conduction



References:

[1]

Zhou Jiahui, Chang Hudong, Liu Honggang. MIM capacitors with various Al2O3 thicknesses for GaAs RFIC application[J]. Journal of Semiconductors, 2015, 36(5): 054004.

[2]

Zhu Qiaozhi, Wang Dejun. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors[J]. Journal of Semiconductors, 2014, 35(2): 024002.

[3]

Li Zhichao, Liu Yuntao, Kuang Zhangqu. A capacitor-free high PSR CMOS low dropout voltage regulator[J]. Journal of Semiconductors, 2014, 35(6): 065004.

[4]

Lei Jianming, Chen Xiaomei. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes[J]. Journal of Semiconductors, 2015, 36(8): 083006.

[5]

Zhang Hong, Zhang Jie, Zhang Mudan. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends[J]. Journal of Semiconductors, 2015, 36(3): 035002.

[6]

Ma Rui, Bai Wenbin, Zhu Zhangming. An energy-efficient and highly linear switching capacitor procedure for SAR ADCs[J]. Journal of Semiconductors, 2015, 36(5): 055014.

[7]

Park I S, Yong C J, Seong S. Metal-HfO2-Ge capacitor:its enhanced charge trapping properties with S-treated substrate and atomic-layer-deposited HfO2 layer[J]. J Vac Sci Technol A, 2015, 33(1): 1A.

[8]

Liu Q, Fang Z, Liu S. Band offsets of La2O3 films on Ge substrates grown by radio frequency magnetron sputtering[J]. Mater Lett, 2014, 116(2): 43.

[9]

Mazet L, Yang S M, Kalinin S V. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications[J]. Sci Technol Adv Mater, 2015, 16: 036005.

[10]

Xiong Y H, Tu H L, Du J. Effects of rapid thermal annealing on structure and electrical properties of Gd-doped HfO2 high k film[J]. Appl Phys Lett, 2011, 98: 082906.

[11]

Sze S M, Ng K K. Physics of semiconductor devices[J]. 3rd ed. Hoboken:Wiley-Interscience, 2006: 227.

[12]

Ling Q D, Liaw D J, Zhu C. Polymer electronic memories:Materials, devices and mechanisms[J]. Prog Polym Sci, 2008, 33: 917.

[13]

Sze S M, Ng K K. Physics of semiconductor devices[J]. 3rd ed. Wiley-Interscience Hoboken, NJ, USA, 2006: 227.

[14]

Okada K. Analysis of the relationship between defect site generation and dielectric breakdown utilizing A-Mode stress induced leakage current[J]. IEEE Trans Electron Devices, 2000, 47(6): 1225.

[15]

Rosenbaum E, Rgister L F. Mechanism of stress-induced leakage current in MOS capacitors[J]. IEEE Trans Electron Devices, 1997, 44(2): 317.

[16]

Devi V L. Schottky barrier parameters and interfacial reactions of rapidly annealed Au/Cu bilayer metal scheme on n-type InP[J]. Open Applied Physics Journal, 2012, 5: 1.

[17]

Zhang J W, He G, Zhou L. Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation[J]. Journal of Alloys & Compounds, 2014, 611(12): 253.

[18]

Klimakov A A. Modeling an electron gun with a focusing lens system with regard for space charge distribution[J]. St Petersburg State University, 2013: 150.

[19]

Bridgwood, Chad, Sosolik. Modeling of space-charge-limited current injection incorporating an advanced model of the Poole-Frenkel effect[J]. Dissertations & Theses-Gradworks, 2008.

[20]

Zhu S, Lo G Q, Kwong D L. Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration[J]. Optics Express, 2014, 22(15): 17930.

[21]

Tigau N, Condurache-Bota S. Effect of thermal annealing in vacuum on the structural and optical properties of Sb2S3 thin films[J]. 2014 International Semiconductor Conference(CAS), 2014: 73.

[22]

Knebel S, Schroeder U, Zhou D. Conduction mechanisms and breakdown characteristics of Al2O3-doped ZrO2 high-k dielectrics for three-dimensional stacked metal-insulator-metal capacitors[J]. IEEE Trans Device Mater Res, 2014, 14: 154.

[23]

Zhu W J, Ma T P, Tamagawa T. Current transport in metal/hafnium oxide/silicon structure[J]. IEEE Electron Device Lett, 2002, 23(2): 97.

[24]

Afanas'ev V V, Badylevich M, Stesmans A. Band offsets between Si and epitaxial rare earth sesquioxides(RE2O3, RE=La, Nd, Gd, Lu):effect of 4f-shell occupancy[J]. Appl Phys Lett, 2008, 93: 192105.

[25]

Charmbers S A, Liang Y, Yu Z. Band offset and structure of SrTiO3/Si(001) hetero junctions[J]. J Vac Sci Technol A, 2001, 19: 934.

[26]

Roy C K, Noor-A-Alam M, Choudhuri A R. Synthesis and microstructure of Gd2O3-doped HfO2 ceramics[J]. Ceram Int, 2012, 38: 1801.

[27]

Liu J W, Liao M Y, Imura M. Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric[J]. Sci Rep, 2014, 4: 6395.

[1]

Zhou Jiahui, Chang Hudong, Liu Honggang. MIM capacitors with various Al2O3 thicknesses for GaAs RFIC application[J]. Journal of Semiconductors, 2015, 36(5): 054004.

[2]

Zhu Qiaozhi, Wang Dejun. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors[J]. Journal of Semiconductors, 2014, 35(2): 024002.

[3]

Li Zhichao, Liu Yuntao, Kuang Zhangqu. A capacitor-free high PSR CMOS low dropout voltage regulator[J]. Journal of Semiconductors, 2014, 35(6): 065004.

[4]

Lei Jianming, Chen Xiaomei. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes[J]. Journal of Semiconductors, 2015, 36(8): 083006.

[5]

Zhang Hong, Zhang Jie, Zhang Mudan. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends[J]. Journal of Semiconductors, 2015, 36(3): 035002.

[6]

Ma Rui, Bai Wenbin, Zhu Zhangming. An energy-efficient and highly linear switching capacitor procedure for SAR ADCs[J]. Journal of Semiconductors, 2015, 36(5): 055014.

[7]

Park I S, Yong C J, Seong S. Metal-HfO2-Ge capacitor:its enhanced charge trapping properties with S-treated substrate and atomic-layer-deposited HfO2 layer[J]. J Vac Sci Technol A, 2015, 33(1): 1A.

[8]

Liu Q, Fang Z, Liu S. Band offsets of La2O3 films on Ge substrates grown by radio frequency magnetron sputtering[J]. Mater Lett, 2014, 116(2): 43.

[9]

Mazet L, Yang S M, Kalinin S V. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications[J]. Sci Technol Adv Mater, 2015, 16: 036005.

[10]

Xiong Y H, Tu H L, Du J. Effects of rapid thermal annealing on structure and electrical properties of Gd-doped HfO2 high k film[J]. Appl Phys Lett, 2011, 98: 082906.

[11]

Sze S M, Ng K K. Physics of semiconductor devices[J]. 3rd ed. Hoboken:Wiley-Interscience, 2006: 227.

[12]

Ling Q D, Liaw D J, Zhu C. Polymer electronic memories:Materials, devices and mechanisms[J]. Prog Polym Sci, 2008, 33: 917.

[13]

Sze S M, Ng K K. Physics of semiconductor devices[J]. 3rd ed. Wiley-Interscience Hoboken, NJ, USA, 2006: 227.

[14]

Okada K. Analysis of the relationship between defect site generation and dielectric breakdown utilizing A-Mode stress induced leakage current[J]. IEEE Trans Electron Devices, 2000, 47(6): 1225.

[15]

Rosenbaum E, Rgister L F. Mechanism of stress-induced leakage current in MOS capacitors[J]. IEEE Trans Electron Devices, 1997, 44(2): 317.

[16]

Devi V L. Schottky barrier parameters and interfacial reactions of rapidly annealed Au/Cu bilayer metal scheme on n-type InP[J]. Open Applied Physics Journal, 2012, 5: 1.

[17]

Zhang J W, He G, Zhou L. Microstructure optimization and optical and interfacial properties modulation of sputtering-derived HfO2 thin films by TiO2 incorporation[J]. Journal of Alloys & Compounds, 2014, 611(12): 253.

[18]

Klimakov A A. Modeling an electron gun with a focusing lens system with regard for space charge distribution[J]. St Petersburg State University, 2013: 150.

[19]

Bridgwood, Chad, Sosolik. Modeling of space-charge-limited current injection incorporating an advanced model of the Poole-Frenkel effect[J]. Dissertations & Theses-Gradworks, 2008.

[20]

Zhu S, Lo G Q, Kwong D L. Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration[J]. Optics Express, 2014, 22(15): 17930.

[21]

Tigau N, Condurache-Bota S. Effect of thermal annealing in vacuum on the structural and optical properties of Sb2S3 thin films[J]. 2014 International Semiconductor Conference(CAS), 2014: 73.

[22]

Knebel S, Schroeder U, Zhou D. Conduction mechanisms and breakdown characteristics of Al2O3-doped ZrO2 high-k dielectrics for three-dimensional stacked metal-insulator-metal capacitors[J]. IEEE Trans Device Mater Res, 2014, 14: 154.

[23]

Zhu W J, Ma T P, Tamagawa T. Current transport in metal/hafnium oxide/silicon structure[J]. IEEE Electron Device Lett, 2002, 23(2): 97.

[24]

Afanas'ev V V, Badylevich M, Stesmans A. Band offsets between Si and epitaxial rare earth sesquioxides(RE2O3, RE=La, Nd, Gd, Lu):effect of 4f-shell occupancy[J]. Appl Phys Lett, 2008, 93: 192105.

[25]

Charmbers S A, Liang Y, Yu Z. Band offset and structure of SrTiO3/Si(001) hetero junctions[J]. J Vac Sci Technol A, 2001, 19: 934.

[26]

Roy C K, Noor-A-Alam M, Choudhuri A R. Synthesis and microstructure of Gd2O3-doped HfO2 ceramics[J]. Ceram Int, 2012, 38: 1801.

[27]

Liu J W, Liao M Y, Imura M. Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric[J]. Sci Rep, 2014, 4: 6395.

[1]

Xue Jiying, Li Tao, Yu Zhiping. Accurate and fast table look-up models for leakage current analysis in 65 nm CMOS technology. J. Semicond., 2009, 30(2): 024004. doi: 10.1088/1674-4926/30/2/024004

[2]

O.Ya Olikh, K.V. Voitenko, R.M. Burbelo, JaM. Olikh. Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure. J. Semicond., 2016, 37(12): 122002. doi: 10.1088/1674-4926/37/12/122002

[3]

Wanjun Chen, Jing Zhang, Bo Zhang, Kevin Jing Chen . Fluorine-plasma surface treatment for gate forward leakage current reduction in AlGaN/GaN HEMTs. J. Semicond., 2013, 34(2): 024003. doi: 10.1088/1674-4926/34/2/024003

[4]

Huaguo Liang, Hui Xu, Zhengfeng Huang, Maoxiang Yi. A low-leakage and NBTI-mitigated N-type domino logic. J. Semicond., 2014, 35(1): 015009. doi: 10.1088/1674-4926/35/1/015009

[5]

Gong Na, Wang Jinhui, Guo Baozeng, Pang Jiao. Temperature and Process Variations Aware Dual Threshold Voltage Footed Domino Circuits Leakage Management. J. Semicond., 2008, 29(12): 2364.

[6]

Zhaonian Yang, Hongxia Liu, Shulong Wang. A low leakage power-rail ESD detection circuit with a modified RC network for a 90-nm CMOS process. J. Semicond., 2013, 34(4): 045010. doi: 10.1088/1674-4926/34/4/045010

[7]

Guo Baozeng, Gong Na, Wang Jinhui. Designing Leakage-Tolerant and Noise-Immune Enhanced Low Power Wide OR Dominos in Sub-70nm CMOS Technologies. J. Semicond., 2006, 27(5): 804.

[8]

Jianwei Wu, Zongguang Yu, Genshen Hong, Rubin Xie. Design of GGNMOS ESD protection device for radiation-hardened 0.18 μm CMOS process. J. Semicond., 2020, 41(12): 122403. doi: 10.1088/1674-4926/41/12/122403

[9]

Bu Jianhui, Bi Jinshun, Liu Mengxin, Han Zhengsheng. A total dose radiation model for deep submicron PDSOI NMOS. J. Semicond., 2011, 32(1): 014002. doi: 10.1088/1674-4926/32/1/014002

[10]

Chen Liu, Yuming Zhang, Yimen Zhang, Hongliang Lü, Bin Lu. Temperature dependent interfacial and electrical characteristics during atomic layer deposition and annealing of HfO2 films in p-GaAs metal-oxide-semiconductor capacitors. J. Semicond., 2015, 36(12): 124003. doi: 10.1088/1674-4926/36/12/124003

[11]

Neha Gupta, Priyanka Parihar, Vaibhav Neema. Application of source biasing technique for energy efficient DECODER circuit design: memory array application. J. Semicond., 2018, 39(4): 045001. doi: 10.1088/1674-4926/39/4/045001

[12]

Jin Guofen, Wu Huizhen, Liang Jun, Lao yanfeng, Yu Ping, Xu Tianning. Electrical Characteristics of Cubic ZnMgO. J. Semicond., 2007, 28(S1): 167.

[13]

Xiuwen Bi, Hailian Liang, Xiaofeng Gu, Long Huang. Design of novel DDSCR with embedded PNP structure for ESD protection. J. Semicond., 2015, 36(12): 124007. doi: 10.1088/1674-4926/36/12/124007

[14]

Jun Ma, Yawei Guo, Yue Wu, Xu Cheng, Xiaoyang Zeng. A 1-V 10-bit 80-MS/s 1.6-mW SAR ADC in 65-nm GP CMOS. J. Semicond., 2013, 34(8): 085014. doi: 10.1088/1674-4926/34/8/085014

[15]

Gao Yong, Liu Jing, Ma Li, Yu Mingbin. Numerical Simulation and Analysis of SiGeC/Si Heterojunction Power Diodes. J. Semicond., 2006, 27(6): 1068.

[16]

Wang Jinhui, Gong Na, Feng Shoubo, Duan Liying, Hou Ligang, Wu Wuchen, Dong Limin. A Novel p-Type Domino AND Gate Design for Sub-65nm CMOS Technologies. J. Semicond., 2007, 28(11): 1818.

[17]

Wang Chong, Zhang Jinfeng, , Yang Yan, Hao Yue, Feng Qian. Temperature Characteristics of AlGaN/GaN HEMTs Using C-Vand TLM for Evaluating Temperatures. J. Semicond., 2006, 27(5): 864.

[18]

Wu Deqi, Yao Jincheng, Zhao Hongsheng, Chang Aimin, Li Feng. Leakage current mechanisms of ultrathin high-k Er2O3 gate dielectric film. J. Semicond., 2009, 30(10): 103003. doi: 10.1088/1674-4926/30/10/103003

[19]

Xu Yun, Li Yuzhang, Song Guofeng, Gan Qiaoqiang, Yang Guohua, Cao Yulian, Cao Qing, Guo Liang, Chen Lianghui. Leakage Current Analysis of High Power AlGaInP Lasers. J. Semicond., 2006, 27(S1): 299.

[20]

Wang Wei, Sun Jianping, Gu Ning. Modeling of Gate Tunneling Current for Nanoscale MOSFETs with High-k Gate Stacks. J. Semicond., 2006, 27(7): 1170.

Search

Advanced Search >>

GET CITATION

J J Yuan, Z B Fang, Y Y Zhu, B Yao, S Y Liu, G He, Y S Tan. Current mechanism and band alignment of Al(Pt)/HfGdO/Ge capacitors[J]. J. Semicond., 2016, 37(3): 034006. doi: 10.1088/1674-4926/37/3/034006.

Export: BibTex EndNote

Article Metrics

Article views: 1543 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 04 November 2015 Manuscript revised: Online: Published: 01 March 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误