J. Semicond. > Volume 37 > Issue 4 > Article Number: 041001

Fabrication techniques and applications of flexible graphene-based electronic devices

Luqi Tao 1, 2, , Danyang Wang 1, 2, , Song Jiang 1, 2, , Ying Liu 1, 2, , Qianyi Xie 1, 2, , He Tian 3, , Ningqin Deng 1, 2, , Xuefeng Wang 1, 2, , Yi Yang 1, 2, and Tianling Ren 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future.

Key words: flexible electronic devicesfabrication processgraphene

Abstract: In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future.

Key words: flexible electronic devicesfabrication processgraphene



References:

[1]

Logothetidis S. Flexible organic electronic devices:materials, process and applications[J]. Mater Sci Eng B, 2008, 152: 96.

[2]

Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428: 911.

[3]

Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nat Nanotechnol, 2008, 3: 270.

[4]

Gingerich M D, Akhmechet R, Cogan S F. A microfabricated, combination flexible circuit/electrode array for a subretinal prosthesis[J]. Invest Ophthalmol Vis Sci, 2012, 53: 5515.

[5]

Gaikwad A M, Steingart D A, Ng T N. A flexible high potential printed battery for powering printed electronics[J]. Appl Phys Lett, 2013, 102: 233302.

[6]

Kim S, Kwon H, Lee S. Low power flexible organic light emitting diode display device[J]. Adv Mater, 2011, 23: 3511.

[7]

Wang X, Gu Y, Xiong Z. Silkmolded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Adv Mater, 2014, 26: 1336.

[8]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666.

[9]

Geim A K. Graphene:status and prospects[J]. Science, 2009, 324: 1530.

[10]

Chabot V, Higgins D, Yu A. A review of graphene and graphene oxide sponge:material synthesis and applications to energy and the environment[J]. Energy Environ Sci, 2014, 7: 1564.

[11]

Losurdo M, Giangregorio M M, Capezzuto P. Graphene CVD growth on copper and nickel:role of hydrogen in kinetics and structure[J]. Phys Chem Chem Phys, 2011, 13: 20836.

[12]

Stankovich S, Dikin D A, Piner R D. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45: 1558.

[13]

Huc V, Bendiab N, Rosman N. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite[J]. Nanotechnology, 2008, 19: 455601.

[14]

Shukla A, Kumar R, Mazher J. Graphene made easy:high quality, large-area samples[J]. Solid State Commun, 2009, 149: 718.

[15]

Li X, Cai W, An J. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324: 1312.

[16]

Kwon S Y, Ciobanu C V, Petrova V. Growth of semiconducting graphene on palladium[J]. Nano Lett, 2009, 9: 3985.

[17]

Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium[J]. Nat Mater, 2008, 7: 406.

[18]

Coraux J, N'Diaye A T, Busse C. Structural coherency of graphene on Ir(111)[J]. Nano Lett, 2008, 8(2): 565.

[19]

Kim K S, Zhao Y, Jang H. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457: 706.

[20]

Shin H A S, Ryu J, Cho S P. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts[J]. Phys Chem Chem Phys, 2014, 16: 3087.

[21]

Malesevic A, Kemps R, Vanhulsel A. Field emission from vertically aligned few-layer graphene[J]. J Appl Phys, 2008, 104: 2.

[22]

Malesevic A, Vitchev R, Schouteden K. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition[J]. Nanotechnology, 2008, 19: 305604.

[23]

Shang N G, Papakonstantinou P, McMullan M. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes[J]. Adv Funct Mater, 2008, 18: 3506.

[24]

Yu Q, Lian J, Siriponglert S. Graphene segregated on Ni surfaces and transferred to insulators[J]. Appl Phys Lett, 2008, 93: 113103.

[25]

Lee Y, Bae S, Jang H. Wafer-scale synthesis and transfer of graphene films[J]. Nano Lett, 2010, 10: 490.

[26]

Kang J, Hwang S, Kim J H. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing[J]. ACS Nano, 2012, 6: 5360.

[27]

Forbeaux I, Themlin J M, Charrier A. Solid-state graphitization mechanisms of silicon carbide 6H-SiC polar faces[J]. Appl Surf Sci, 2000, 162: 406.

[28]

Berger C, Song Z, Li T. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108: 19912.

[29]

Rollings E, Gweon GH, Zhou S Y. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate[J]. J Phys Chem Solids, 2006, 67: 2172.

[30]

Emtsev K V, Bostwick A, Horn K. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nat Mater, 2009, 8: 203.

[31]

Juang Z Y, Wu C Y, Lo C W. Synthesis of graphene on silicon carbide substrates at low temperature[J]. Carbon, 2009, 47: 2026.

[32]

Jung I, Dikin D A, Piner R D. Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures[J]. Nano Lett, 2008, 8: 4283.

[33]

Pei S, Cheng H M. The reduction of graphene oxide[J]. Carbon, 2012, 50: 3210.

[34]

Yang D, Velamakanni A, Bozoklu G. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy[J]. Carbon, 2009, 47: 145.

[35]

Zhang Y, Guo L, Wei S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5: 15.

[36]

Tian H, Xie D, Yang Y. Static behavior of a graphene-based sound-emitting device[J]. Nanoscale, 2012, 4: 3345.

[37]

Tian H, Xie D, Yang Y. 2012 Single-layer graphene sound-emitting devices:experiments and modeling[J]. Nanoscale, 2012, 4: 2272.

[38]

Tian H, Ren T L, Xie D. Graphene-on-paper sound source devices[J]. ACS Nano, 2011, 5: 4878.

[39]

Ghosh S, Calizo I, Teweldebrhan D. Extremely high thermal conductivity of graphene:prospects for thermal management applications in nanoelectronic circuits[J]. Appl Phys Lett, 2008, 92: 151911.

[40]

Hwang E H, Sarma S D. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene[J]. Phys Rev B, 2008, 77: 115449.

[41]

Tao L, Jiang S, Li C. The use of graphene-based earphones in wireless communication[J]. Tsinghua Sci Technol, 2015, 20: 270.

[42]

Tian H, Li C, Mohammad M A. Graphene earphones:entertainment for both humans and animals[J]. ACS Nano, 2014, 8: 5883.

[43]

Arnold H D, Crandall I B. The thermophone as a precision source of sound[J]. Phys Rev, 1917, 10: 22.

[44]

Kozlov M E, Haines C S, Oh J. Sound of carbon nanotube assemblies[J]. J Appl Phys, 2009, 106: 124311.

[45]

Niskanen A O, Hassel J, Tikander M. Suspended metal wire array as a thermoacoustic sound source[J]. Appl Phys Lett, 2009, 95: 163102.

[46]

Shinoda H, Nakajima T, Ueno K. Thermally induced ultrasonic emission from porous silicon[J]. Nature, 1999, 400: 853.

[47]

Xiao L, Chen Z, Feng C. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers[J]. Nano Lett, 2008, 8: 4539.

[48]

Morozov S V, Novoselov K S, Katsnelson M I. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett, 2008, 100: 16602.

[49]

Balandin A A, Ghosh S, Bao W. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008, 8: 902.

[50]

Tian H, Yang Y, Li C. Flexible, transparent single-layer graphene earphone[J]. IEEE International Electron Devices Meeting (IEDM), 2014: 13.

[51]

Tian H, Cui Y L, Yang Y. Wafer-scale flexible graphene loudspeakers[J]. IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014: 556.

[52]

Tian H, Yang Y, Xie D. Flexible and large-area sound-emitting device using reduced graphene oxide[J]. IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013: 709.

[53]

Van Noorden R. Moving towards a graphene world[J]. Nature, 2006, 442: 228.

[54]

Bolotin K I, Sikes K J, Jiang Z. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146: 351.

[55]

Sekitani T, Noguchi Y, Hata K. A rubberlike stretchable active matrix using elastic conductors[J]. Science, 2008, 321: 1468.

[56]

Chung L W, Wang L, Li B. Thermal transistor:heat flux switching and modulating[J]. J Phys Soc Japan, 2008, 77: 54402.

[57]

Ko H C, Stoykovich M P, Song J. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454: 748.

[58]

Segal D, Nitzan A. Spin-boson thermal rectifier[J]. Phys Rev Lett, 2005, 94: 34301.

[59]

Kobayashi W, Teraoka Y, Terasaki I. An oxide thermal rectifier[J]. Appl Phys Lett, 2009, 95: 171905.

[60]

Peyrard M. The design of a thermal rectifier[J]. Europhysics Lett, 2006, 76: 49.

[61]

Yang N, Zhang G, Li B. Carbon nanocone:a promising thermal rectifier[J]. Appl Phys Lett, 2008, 93: 243111.

[62]

Zhong W R, Huang W H, Deng X R. Thermal rectification in thickness-asymmetric graphene nanoribbons[J]. Appl Phys Lett, 2011, 99: 193104.

[63]

Takahashi K, Inoue M, Ito Y. Defective carbon nanotube for use as a thermal rectifier[J]. Jpn J Appl Phys, 2010, 49: 02B.

[64]

Gordiz K, Allaei S M V, Kowsary F. Thermal rectification in multi-walled carbon nanotubes:a molecular dynamics study[J]. Appl Phys Lett, 2011, 99: 251901.

[65]

O'callaghan P W, Probert S D, Jones A. A thermal rectifier[J]. J Phys D Appl Phys, 1970, 3: 1352.

[66]

Tian H, Xie D, Yang Y. A novel solid-state thermal rectifier based on reduced graphene oxide[J]. Sci Rep, 2012, 2: 1.

[67]

Zeng N, Wang J S. Mechanisms causing thermal rectification:the influence of phonon frequency, asymmetry, and nonlinear interactions[J]. Phys Rev B, 2008, 78: 24305.

[68]

Gao P X, Song J, Liu J. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices[J]. Adv Mater, 2007, 19: 67.

[69]

Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312: 242.

[70]

Xue Q, Wang Z, Tian H. A record flexible piezoelectric KNN ultrafine-grained nanopowder-based nanogenerator[J]. AIP Adv, 2015, 5: 17102.

[71]

Kwon J, Sharma B K, Ahn J H. Graphene based nanogenerator for energy harvesting[J]. Jpn J Appl Phys, 2013, 52: 06G.

[72]

Fan F R, Lin L, Zhu G. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Lett, 2012, 12: 3109.

[73]

Yang Y, Tian H, Sun H. A spring-connected nanogenerator based on ZnO nanoparticles and multiwall carbon nanotube[J]. RSC Adv, 2013, 21: 15.

[74]

Que R, Shao Q, Li Q. Flexible nanogenerators based on graphene oxide films for acoustic energy harvesting[J]. Angew Chemie, 2012, 124: 5514.

[75]

Tian H, Ma S, Zhao HM. Flexible electrostatic nanogenerator using graphene oxide film[J]. Nanoscale, 2013, 5: 8951.

[76]

Hammock M L, Chortos A, Tee B C. 25th anniversary article:the evolution of electronic skin (E-Skin):a brief history, design considerations, and recent progress[J]. Adv Mater, 2013, 25: 5997.

[77]

Lipomi D J, Vosgueritchian M, Tee B C K. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nat Nanotechnol, 2011, 6: 788.

[78]

Benight S J, Wang C, Tok J B H. Stretchable and self-healing polymers and devices for electronic skin[J]. Prog Polym Sci, 2013, 38: 1961.

[79]

Tian H, Shu Y, Wang X F. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range[J]. Sci Rep, 2015, 5: 8603.

[80]

Chortos A, Bao Z. Skin-inspired electronic devices[J]. Mater Today, 2014, 17: 321.

[81]

Takei K, Takahashi T, Ho J C. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin[J]. Nat Mater, 2010, 9: 821.

[82]

Sekitani T, Someya T. Stretchable organic integrated circuits for large-area electronic skin surfaces[J]. Mrs Bull, 2012, 37: 236.

[83]

Zhao Jing, Zhang Guangyu, Shi Dongxia. Review of graphene-based strain sensors[J]. Chin Phys B, 2013, 22: 57701.

[84]

Bae S H, Lee Y, Sharma B K. Graphene-based transparent strain sensor[J]. Carbon, 2013, 51: 236.

[85]

Sorkin V, Zhang Y W. Graphene-based pressure nano-sensors[J]. J Mol Model, 2011, 17: 2825.

[86]

Xu Y, Guo Z, Chen H. In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures[J]. Appl Phys Lett, 2011, 99: 133109.

[87]

Proctor J E, Gregoryanz E, Novoselov K S. High-pressure Raman spectroscopy of graphene[J]. Phys Rev B, 2009, 80: 73408.

[88]

Yao H, Ge J, Wang C. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. .

[89]

Ma J, Jin W, Ho H L. High-sensitivity fiber-tip pressure sensor with graphene diaphragm[J]. Opt Lett, 2012, 37: 2493.

[90]

Zhu S E, Ghatkesar M K, Zhang C. Graphene based piezoresistive pressure sensor[J]. Appl Phys Lett, 2013, 102: 161904.

[91]

Wang Y, Wang L, Yang T. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Adv Funct Mater, 2014, 24: 4666.

[92]

Zhao J, He C, Yang R. Ultra-sensitive strain sensors based on piezoresistive nanographene films[J]. Appl Phys Lett, 2012, 101: 63112.

[93]

Hempel M, Nezich D, Kong J. A novel class of strain gauges based on layered percolative films of 2D materials[J]. Nano Lett, 2012, 12: 5714.

[94]

Li X, Zhang R, Yu W. Stretchable and highly sensitive graphene-on-polymer strain sensors[J]. Sci Rep, 2012, 2: 870.

[95]

Tian H, Shu Y, Cui Y L. Scalable fabrication of high-performance and flexible graphene strain sensors[J]. Nanoscale, 2014, 6: 699.

[96]

Harbers G, Hoelen C. LP-2:high performance LCD backlighting using high intensity red, green and blue light emitting diodes[J]. SID Symposium Digest of Technical Papers, 2011, 32.

[97]

Jin D, Lee J, Kim T. Distinguished paper:world-largest (6[J]. .

[98]

Avouris P. Graphene:electronic and photonic properties and devices[J]. Nano Lett, 2010, 10: 4285.

[99]

Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6: 3677.

[100]

Bonaccorso F, Sun Z, Hasan T. Graphene photonics and optoelectronics[J]. Nat Photonics, 2010, 4: 611.

[101]

Liu M, Yin X, Ulin-Avila E. A graphene-based broadband optical modulator[J]. Nature, 2011, 474: 64.

[102]

Blake P, Brimicombe P D, Nair R R. Graphene-based liquid crystal device[J]. Nano Lett, 2008, 8: 1704.

[103]

Kim Y D, Kim H, Cho Y. Bright visible light emission from graphene[J]. Nat Nanotechnol, 2015, 10: 676.

[104]

Wang X, Tian H, Mohammad M A. A spectrally tunable all-graphene-based flexible field-effect light-emitting device[J]. Nat Commun, 2015, 6: 7767.

[1]

Logothetidis S. Flexible organic electronic devices:materials, process and applications[J]. Mater Sci Eng B, 2008, 152: 96.

[2]

Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428: 911.

[3]

Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nat Nanotechnol, 2008, 3: 270.

[4]

Gingerich M D, Akhmechet R, Cogan S F. A microfabricated, combination flexible circuit/electrode array for a subretinal prosthesis[J]. Invest Ophthalmol Vis Sci, 2012, 53: 5515.

[5]

Gaikwad A M, Steingart D A, Ng T N. A flexible high potential printed battery for powering printed electronics[J]. Appl Phys Lett, 2013, 102: 233302.

[6]

Kim S, Kwon H, Lee S. Low power flexible organic light emitting diode display device[J]. Adv Mater, 2011, 23: 3511.

[7]

Wang X, Gu Y, Xiong Z. Silkmolded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Adv Mater, 2014, 26: 1336.

[8]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666.

[9]

Geim A K. Graphene:status and prospects[J]. Science, 2009, 324: 1530.

[10]

Chabot V, Higgins D, Yu A. A review of graphene and graphene oxide sponge:material synthesis and applications to energy and the environment[J]. Energy Environ Sci, 2014, 7: 1564.

[11]

Losurdo M, Giangregorio M M, Capezzuto P. Graphene CVD growth on copper and nickel:role of hydrogen in kinetics and structure[J]. Phys Chem Chem Phys, 2011, 13: 20836.

[12]

Stankovich S, Dikin D A, Piner R D. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45: 1558.

[13]

Huc V, Bendiab N, Rosman N. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite[J]. Nanotechnology, 2008, 19: 455601.

[14]

Shukla A, Kumar R, Mazher J. Graphene made easy:high quality, large-area samples[J]. Solid State Commun, 2009, 149: 718.

[15]

Li X, Cai W, An J. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324: 1312.

[16]

Kwon S Y, Ciobanu C V, Petrova V. Growth of semiconducting graphene on palladium[J]. Nano Lett, 2009, 9: 3985.

[17]

Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium[J]. Nat Mater, 2008, 7: 406.

[18]

Coraux J, N'Diaye A T, Busse C. Structural coherency of graphene on Ir(111)[J]. Nano Lett, 2008, 8(2): 565.

[19]

Kim K S, Zhao Y, Jang H. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457: 706.

[20]

Shin H A S, Ryu J, Cho S P. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts[J]. Phys Chem Chem Phys, 2014, 16: 3087.

[21]

Malesevic A, Kemps R, Vanhulsel A. Field emission from vertically aligned few-layer graphene[J]. J Appl Phys, 2008, 104: 2.

[22]

Malesevic A, Vitchev R, Schouteden K. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition[J]. Nanotechnology, 2008, 19: 305604.

[23]

Shang N G, Papakonstantinou P, McMullan M. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes[J]. Adv Funct Mater, 2008, 18: 3506.

[24]

Yu Q, Lian J, Siriponglert S. Graphene segregated on Ni surfaces and transferred to insulators[J]. Appl Phys Lett, 2008, 93: 113103.

[25]

Lee Y, Bae S, Jang H. Wafer-scale synthesis and transfer of graphene films[J]. Nano Lett, 2010, 10: 490.

[26]

Kang J, Hwang S, Kim J H. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing[J]. ACS Nano, 2012, 6: 5360.

[27]

Forbeaux I, Themlin J M, Charrier A. Solid-state graphitization mechanisms of silicon carbide 6H-SiC polar faces[J]. Appl Surf Sci, 2000, 162: 406.

[28]

Berger C, Song Z, Li T. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108: 19912.

[29]

Rollings E, Gweon GH, Zhou S Y. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate[J]. J Phys Chem Solids, 2006, 67: 2172.

[30]

Emtsev K V, Bostwick A, Horn K. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nat Mater, 2009, 8: 203.

[31]

Juang Z Y, Wu C Y, Lo C W. Synthesis of graphene on silicon carbide substrates at low temperature[J]. Carbon, 2009, 47: 2026.

[32]

Jung I, Dikin D A, Piner R D. Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures[J]. Nano Lett, 2008, 8: 4283.

[33]

Pei S, Cheng H M. The reduction of graphene oxide[J]. Carbon, 2012, 50: 3210.

[34]

Yang D, Velamakanni A, Bozoklu G. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy[J]. Carbon, 2009, 47: 145.

[35]

Zhang Y, Guo L, Wei S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5: 15.

[36]

Tian H, Xie D, Yang Y. Static behavior of a graphene-based sound-emitting device[J]. Nanoscale, 2012, 4: 3345.

[37]

Tian H, Xie D, Yang Y. 2012 Single-layer graphene sound-emitting devices:experiments and modeling[J]. Nanoscale, 2012, 4: 2272.

[38]

Tian H, Ren T L, Xie D. Graphene-on-paper sound source devices[J]. ACS Nano, 2011, 5: 4878.

[39]

Ghosh S, Calizo I, Teweldebrhan D. Extremely high thermal conductivity of graphene:prospects for thermal management applications in nanoelectronic circuits[J]. Appl Phys Lett, 2008, 92: 151911.

[40]

Hwang E H, Sarma S D. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene[J]. Phys Rev B, 2008, 77: 115449.

[41]

Tao L, Jiang S, Li C. The use of graphene-based earphones in wireless communication[J]. Tsinghua Sci Technol, 2015, 20: 270.

[42]

Tian H, Li C, Mohammad M A. Graphene earphones:entertainment for both humans and animals[J]. ACS Nano, 2014, 8: 5883.

[43]

Arnold H D, Crandall I B. The thermophone as a precision source of sound[J]. Phys Rev, 1917, 10: 22.

[44]

Kozlov M E, Haines C S, Oh J. Sound of carbon nanotube assemblies[J]. J Appl Phys, 2009, 106: 124311.

[45]

Niskanen A O, Hassel J, Tikander M. Suspended metal wire array as a thermoacoustic sound source[J]. Appl Phys Lett, 2009, 95: 163102.

[46]

Shinoda H, Nakajima T, Ueno K. Thermally induced ultrasonic emission from porous silicon[J]. Nature, 1999, 400: 853.

[47]

Xiao L, Chen Z, Feng C. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers[J]. Nano Lett, 2008, 8: 4539.

[48]

Morozov S V, Novoselov K S, Katsnelson M I. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett, 2008, 100: 16602.

[49]

Balandin A A, Ghosh S, Bao W. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008, 8: 902.

[50]

Tian H, Yang Y, Li C. Flexible, transparent single-layer graphene earphone[J]. IEEE International Electron Devices Meeting (IEDM), 2014: 13.

[51]

Tian H, Cui Y L, Yang Y. Wafer-scale flexible graphene loudspeakers[J]. IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014: 556.

[52]

Tian H, Yang Y, Xie D. Flexible and large-area sound-emitting device using reduced graphene oxide[J]. IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013: 709.

[53]

Van Noorden R. Moving towards a graphene world[J]. Nature, 2006, 442: 228.

[54]

Bolotin K I, Sikes K J, Jiang Z. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146: 351.

[55]

Sekitani T, Noguchi Y, Hata K. A rubberlike stretchable active matrix using elastic conductors[J]. Science, 2008, 321: 1468.

[56]

Chung L W, Wang L, Li B. Thermal transistor:heat flux switching and modulating[J]. J Phys Soc Japan, 2008, 77: 54402.

[57]

Ko H C, Stoykovich M P, Song J. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454: 748.

[58]

Segal D, Nitzan A. Spin-boson thermal rectifier[J]. Phys Rev Lett, 2005, 94: 34301.

[59]

Kobayashi W, Teraoka Y, Terasaki I. An oxide thermal rectifier[J]. Appl Phys Lett, 2009, 95: 171905.

[60]

Peyrard M. The design of a thermal rectifier[J]. Europhysics Lett, 2006, 76: 49.

[61]

Yang N, Zhang G, Li B. Carbon nanocone:a promising thermal rectifier[J]. Appl Phys Lett, 2008, 93: 243111.

[62]

Zhong W R, Huang W H, Deng X R. Thermal rectification in thickness-asymmetric graphene nanoribbons[J]. Appl Phys Lett, 2011, 99: 193104.

[63]

Takahashi K, Inoue M, Ito Y. Defective carbon nanotube for use as a thermal rectifier[J]. Jpn J Appl Phys, 2010, 49: 02B.

[64]

Gordiz K, Allaei S M V, Kowsary F. Thermal rectification in multi-walled carbon nanotubes:a molecular dynamics study[J]. Appl Phys Lett, 2011, 99: 251901.

[65]

O'callaghan P W, Probert S D, Jones A. A thermal rectifier[J]. J Phys D Appl Phys, 1970, 3: 1352.

[66]

Tian H, Xie D, Yang Y. A novel solid-state thermal rectifier based on reduced graphene oxide[J]. Sci Rep, 2012, 2: 1.

[67]

Zeng N, Wang J S. Mechanisms causing thermal rectification:the influence of phonon frequency, asymmetry, and nonlinear interactions[J]. Phys Rev B, 2008, 78: 24305.

[68]

Gao P X, Song J, Liu J. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices[J]. Adv Mater, 2007, 19: 67.

[69]

Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312: 242.

[70]

Xue Q, Wang Z, Tian H. A record flexible piezoelectric KNN ultrafine-grained nanopowder-based nanogenerator[J]. AIP Adv, 2015, 5: 17102.

[71]

Kwon J, Sharma B K, Ahn J H. Graphene based nanogenerator for energy harvesting[J]. Jpn J Appl Phys, 2013, 52: 06G.

[72]

Fan F R, Lin L, Zhu G. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Lett, 2012, 12: 3109.

[73]

Yang Y, Tian H, Sun H. A spring-connected nanogenerator based on ZnO nanoparticles and multiwall carbon nanotube[J]. RSC Adv, 2013, 21: 15.

[74]

Que R, Shao Q, Li Q. Flexible nanogenerators based on graphene oxide films for acoustic energy harvesting[J]. Angew Chemie, 2012, 124: 5514.

[75]

Tian H, Ma S, Zhao HM. Flexible electrostatic nanogenerator using graphene oxide film[J]. Nanoscale, 2013, 5: 8951.

[76]

Hammock M L, Chortos A, Tee B C. 25th anniversary article:the evolution of electronic skin (E-Skin):a brief history, design considerations, and recent progress[J]. Adv Mater, 2013, 25: 5997.

[77]

Lipomi D J, Vosgueritchian M, Tee B C K. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nat Nanotechnol, 2011, 6: 788.

[78]

Benight S J, Wang C, Tok J B H. Stretchable and self-healing polymers and devices for electronic skin[J]. Prog Polym Sci, 2013, 38: 1961.

[79]

Tian H, Shu Y, Wang X F. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range[J]. Sci Rep, 2015, 5: 8603.

[80]

Chortos A, Bao Z. Skin-inspired electronic devices[J]. Mater Today, 2014, 17: 321.

[81]

Takei K, Takahashi T, Ho J C. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin[J]. Nat Mater, 2010, 9: 821.

[82]

Sekitani T, Someya T. Stretchable organic integrated circuits for large-area electronic skin surfaces[J]. Mrs Bull, 2012, 37: 236.

[83]

Zhao Jing, Zhang Guangyu, Shi Dongxia. Review of graphene-based strain sensors[J]. Chin Phys B, 2013, 22: 57701.

[84]

Bae S H, Lee Y, Sharma B K. Graphene-based transparent strain sensor[J]. Carbon, 2013, 51: 236.

[85]

Sorkin V, Zhang Y W. Graphene-based pressure nano-sensors[J]. J Mol Model, 2011, 17: 2825.

[86]

Xu Y, Guo Z, Chen H. In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures[J]. Appl Phys Lett, 2011, 99: 133109.

[87]

Proctor J E, Gregoryanz E, Novoselov K S. High-pressure Raman spectroscopy of graphene[J]. Phys Rev B, 2009, 80: 73408.

[88]

Yao H, Ge J, Wang C. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. .

[89]

Ma J, Jin W, Ho H L. High-sensitivity fiber-tip pressure sensor with graphene diaphragm[J]. Opt Lett, 2012, 37: 2493.

[90]

Zhu S E, Ghatkesar M K, Zhang C. Graphene based piezoresistive pressure sensor[J]. Appl Phys Lett, 2013, 102: 161904.

[91]

Wang Y, Wang L, Yang T. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Adv Funct Mater, 2014, 24: 4666.

[92]

Zhao J, He C, Yang R. Ultra-sensitive strain sensors based on piezoresistive nanographene films[J]. Appl Phys Lett, 2012, 101: 63112.

[93]

Hempel M, Nezich D, Kong J. A novel class of strain gauges based on layered percolative films of 2D materials[J]. Nano Lett, 2012, 12: 5714.

[94]

Li X, Zhang R, Yu W. Stretchable and highly sensitive graphene-on-polymer strain sensors[J]. Sci Rep, 2012, 2: 870.

[95]

Tian H, Shu Y, Cui Y L. Scalable fabrication of high-performance and flexible graphene strain sensors[J]. Nanoscale, 2014, 6: 699.

[96]

Harbers G, Hoelen C. LP-2:high performance LCD backlighting using high intensity red, green and blue light emitting diodes[J]. SID Symposium Digest of Technical Papers, 2011, 32.

[97]

Jin D, Lee J, Kim T. Distinguished paper:world-largest (6[J]. .

[98]

Avouris P. Graphene:electronic and photonic properties and devices[J]. Nano Lett, 2010, 10: 4285.

[99]

Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6: 3677.

[100]

Bonaccorso F, Sun Z, Hasan T. Graphene photonics and optoelectronics[J]. Nat Photonics, 2010, 4: 611.

[101]

Liu M, Yin X, Ulin-Avila E. A graphene-based broadband optical modulator[J]. Nature, 2011, 474: 64.

[102]

Blake P, Brimicombe P D, Nair R R. Graphene-based liquid crystal device[J]. Nano Lett, 2008, 8: 1704.

[103]

Kim Y D, Kim H, Cho Y. Bright visible light emission from graphene[J]. Nat Nanotechnol, 2015, 10: 676.

[104]

Wang X, Tian H, Mohammad M A. A spectrally tunable all-graphene-based flexible field-effect light-emitting device[J]. Nat Commun, 2015, 6: 7767.

[1]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[2]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[3]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[4]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[5]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[6]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[7]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[8]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[9]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[10]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[11]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[12]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[13]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[14]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[15]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

[16]

Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Dongdong Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001

[17]

Jiang Ran, Meng Lingguo, Zhang Xijian, Hyung-Suk Jung, Cheol Seong Hwang. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. J. Semicond., 2012, 33(9): 093004. doi: 10.1088/1674-4926/33/9/093004

[18]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[19]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[20]

Gui Yang, Yufeng Zhang, Xunwang Yan. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide. J. Semicond., 2013, 34(8): 083004. doi: 10.1088/1674-4926/34/8/083004

Search

Advanced Search >>

GET CITATION

L Q Tao, D Y Wang, S Jiang, Y Liu, Q Y Xie, H Tian, N Q Deng, X F Wang, Y Yang, T L Ren. Fabrication techniques and applications of flexible graphene-based electronic devices[J]. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001.

Export: BibTex EndNote

Article Metrics

Article views: 2012 Times PDF downloads: 50 Times Cited by: 0 Times

History

Manuscript received: 04 December 2015 Manuscript revised: Online: Published: 01 April 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误