J. Semicond. > Volume 37 > Issue 5 > Article Number: 054009

Endurance characteristics of phase change memory cells

Ruru Huo 1, 2, , , Daolin Cai 1, , Bomy Chen 1, , Yifeng Chen 1, , Yuchan Wang 1, , Yueqing Wang 1, , Hongyang Wei 1, , Qing Wang 1, , Yangyang Xia 1, , Dan Gao 1, and Zhitang Song 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The endurance characteristics of phase change memory are studied. With operational cycles, the resistances of reset and set states gradually change to the opposite direction. What is more, the operational conditions that are needed are also discussed. The failure and the changes are concerned with the compositional change of the phase change material. An abnormal phenomenon that the threshold voltage decreases slightly at first and then increases is observed, which is due to the coaction of interface contact and growing active volume size changing.

Key words: phase change memoryendurance, compositional changethreshold voltage

Abstract: The endurance characteristics of phase change memory are studied. With operational cycles, the resistances of reset and set states gradually change to the opposite direction. What is more, the operational conditions that are needed are also discussed. The failure and the changes are concerned with the compositional change of the phase change material. An abnormal phenomenon that the threshold voltage decreases slightly at first and then increases is observed, which is due to the coaction of interface contact and growing active volume size changing.

Key words: phase change memoryendurance, compositional changethreshold voltage



References:

[1]

Lai S. Current status of the phase change memory and its future[J]. Electron Devices Meeting, 2003: 279.

[2]

Yang T Y, Park I M, You H Y. Change of damage mechanism by the frequency of applied pulsed DC in the Ge2Sb2Te5 line[J]. J Electrochem Soc, 2009, 156: 617.

[3]

Ovshinsky S R. Reversible electrical switching phenomena in disordered structures[J]. Phys Rev Lett, 1968, 21(20): 1450.

[4]

Kinam K, Su J A. Reliability investigations for manufacturable high density PRAM[J]. 43rd Annu IEEE International Reliability Physics Symposium, 2005: 157.

[5]

Ryu S O, Yoon S M, Choi K J. Crystallization behavior and physical properties of Sb-excess Ge2Sb2+xTe5 thin films for phase change memory (PCM) devices[J]. J Electrochem Soc, 2006, 153(3): 234.

[6]

Park J B, Park J S, Baik H S. Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory[J]. J Electrochem Soc, 2007, 154(3): 139.

[7]

Horak J, Drasar C, Novotny R. Non-stoichiometry of the crystal lattice of antimony telluride[J]. Physica Status Solidi, 1995, 149: 549.

[8]

Thonhauser T, Jeon G, Mahan G. Stress-induced defects in Sb2Te3[J]. Phys Rev B, 2003, 68(20): 1.

[9]

Yñez-Limn J M, Gonzlez-Hernndez J, Alvarado-Gil J. Thermal and electrical properties of the Ge:Sb:Te system by photoacoustic and Hall measurements[J]. Phys Rev B, 1995, 52(23): 16321.

[10]

Sarkar J, Gleixner B. Evolution of phase change memory characteristics with operating cycles: electrical characterization and physical modeling[J]. Appl Phys Lett, 2007, 91(2007): 2.

[11]

Gleixner B, Pellizzer F, Bez R. Reliability characterization of phase change memory[J]. 10th Annual Non-Volatile Memory Technology Symposium, 2009: 7.

[12]

Ielmini D, Lacaita A L, Pirovano A. Analysis of phase distribution in phase-change nonvolatile memories[J]. IEEE Electron Device Lett, 2004, 25(7): 507.

[13]

Shih Y H, Lee M H, Breitwisch M. Understanding amorphous states of phase-change memory using Frenkel-Poole model[J]. IEDM Technical Digest-International Electron Devices Meeting, 2009, 3: 753.

[1]

Lai S. Current status of the phase change memory and its future[J]. Electron Devices Meeting, 2003: 279.

[2]

Yang T Y, Park I M, You H Y. Change of damage mechanism by the frequency of applied pulsed DC in the Ge2Sb2Te5 line[J]. J Electrochem Soc, 2009, 156: 617.

[3]

Ovshinsky S R. Reversible electrical switching phenomena in disordered structures[J]. Phys Rev Lett, 1968, 21(20): 1450.

[4]

Kinam K, Su J A. Reliability investigations for manufacturable high density PRAM[J]. 43rd Annu IEEE International Reliability Physics Symposium, 2005: 157.

[5]

Ryu S O, Yoon S M, Choi K J. Crystallization behavior and physical properties of Sb-excess Ge2Sb2+xTe5 thin films for phase change memory (PCM) devices[J]. J Electrochem Soc, 2006, 153(3): 234.

[6]

Park J B, Park J S, Baik H S. Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory[J]. J Electrochem Soc, 2007, 154(3): 139.

[7]

Horak J, Drasar C, Novotny R. Non-stoichiometry of the crystal lattice of antimony telluride[J]. Physica Status Solidi, 1995, 149: 549.

[8]

Thonhauser T, Jeon G, Mahan G. Stress-induced defects in Sb2Te3[J]. Phys Rev B, 2003, 68(20): 1.

[9]

Yñez-Limn J M, Gonzlez-Hernndez J, Alvarado-Gil J. Thermal and electrical properties of the Ge:Sb:Te system by photoacoustic and Hall measurements[J]. Phys Rev B, 1995, 52(23): 16321.

[10]

Sarkar J, Gleixner B. Evolution of phase change memory characteristics with operating cycles: electrical characterization and physical modeling[J]. Appl Phys Lett, 2007, 91(2007): 2.

[11]

Gleixner B, Pellizzer F, Bez R. Reliability characterization of phase change memory[J]. 10th Annual Non-Volatile Memory Technology Symposium, 2009: 7.

[12]

Ielmini D, Lacaita A L, Pirovano A. Analysis of phase distribution in phase-change nonvolatile memories[J]. IEEE Electron Device Lett, 2004, 25(7): 507.

[13]

Shih Y H, Lee M H, Breitwisch M. Understanding amorphous states of phase-change memory using Frenkel-Poole model[J]. IEDM Technical Digest-International Electron Devices Meeting, 2009, 3: 753.

[1]

Joshua M. Kundu, Patrick M. Karimi, Walter K. Njoroge. Crystallization kinetics of Sn40Se60 thin films for phase change memory applications. J. Semicond., 2015, 36(6): 063002. doi: 10.1088/1674-4926/36/6/063002

[2]

Yaoyao Lu, Daolin Cai, Yifeng Chen, Shuai Yan, Lei Wu, Yuanguang Liu, Yang Li, Zhitang Song. Improving the data retention of phase change memory by using a doping element in selected Ge2Sb2Te5. J. Semicond., 2019, 40(4): 042402. doi: 10.1088/1674-4926/40/4/042402

[3]

Feng Gaoming, Liu Bo, Wu Liangcai, Song Zhitang, Feng Songlin, Chen Bomy. Properties of W Sub-Microtube Heater Electrode Used for PhaseChange Memory. J. Semicond., 2007, 28(7): 1134.

[4]

Lin Zhaojun, Zhao Jianzhi, Zhang Min. Threshold Voltage of AIGaN/GaN HFET. J. Semicond., 2007, 28(S1): 422.

[5]

Kong Ming, Guo Jianmin, Zhang Ke, Li Wenhong. A Novel CMOS Voltage Reference Based on Threshold Voltage Difference Between p-Type and n-Type MOSFETs. J. Semicond., 2007, 28(10): 1546.

[6]

Chaowen Liu, Jingping Xu, Lu Liu, Hanhan Lu, Yuan Huang. A threshold-voltage model for small-scaled GaAs nMOSFET with stacked high-k gate dielectric. J. Semicond., 2016, 37(2): 024004. doi: 10.1088/1674-4926/37/2/024004

[7]

Zhang Guohe, Shao Zhibiao, Zhou Kai. Threshold Voltage Model for a Fully Depleted SOI-MOSFETwith a Non-Uniform Profile. J. Semicond., 2007, 28(6): 842.

[8]

Xu Jian, Ding Lei, Han Zhengsheng, Zhong Chuanjie. Impact of Two-Dimension Effects on Threshold Voltage of Fully Depleted SOI MOSFETs with Asymmetric Halos. J. Semicond., 2008, 29(3): 559.

[9]

Ji Feng, Xu Jingping, Lai P T, Chen Weibing, Li Yanping. 2D Threshold-Voltage Model for High-k Gate-Dielectric MOSFETs. J. Semicond., 2006, 27(10): 1725.

[10]

Li Ruizhen, Han Zhengsheng. An Analytical Threshold Voltage Model for Fully Depleted SOI MOSFETs. J. Semicond., 2005, 26(12): 2303.

[11]

Xu Bojuan, Du Gang, Xia Zhiliang, Zeng Lang, Han Ruqi, Liu Xiaoyan. Threshold Voltage Model of a Double-Gate MOSFET with Schottky Source and Drain. J. Semicond., 2007, 28(8): 1179.

[12]

Tang Junxiong, Tang Minghua, Yang Feng, Zhang Junjie, Zhou Yichun, Zheng Xuejun. A Temperature-Dependent Model for Threshold Voltage and Potential Distribution of Fully Depleted SOI MOSFETs. J. Semicond., 2008, 29(1): 45.

[13]

He Hongyu, Zheng Xueren. Analytical drain current model for amorphous IGZO thin-film transistors in above-threshold regime. J. Semicond., 2011, 32(7): 074004. doi: 10.1088/1674-4926/32/7/074004

[14]

T. Chaudhary, G. Khanna. Analysis and impact of process variability on performance of junctionless double gate VeSFET. J. Semicond., 2017, 38(10): 104003. doi: 10.1088/1674-4926/38/10/104003

[15]

Li Xi, Song Zhitang, Cai Daolin, Chen Xiaogang, Chen Houpeng. An SPICE model for phase-change memory simulations. J. Semicond., 2011, 32(9): 094011. doi: 10.1088/1674-4926/32/9/094011

[16]

Santosh K. Gupta, Srimanta Baishya. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects. J. Semicond., 2013, 34(7): 074001. doi: 10.1088/1674-4926/34/7/074001

[17]

Dai Zhenqing, Yang Ruixia, Yang Kewu. Temperature-Dependent 4H-SiC MOSFET Channel-Electron Mobility Model for Circuit Simulation. J. Semicond., 2007, 28(8): 1252.

[18]

Hu Shigang, Hao Yue, Ma Xiaohua, Cao Yanrong, Chen Chi, Wu Xiaofeng. Degradation of nMOS and pMOSFETs with Ultrathin Gate Oxide Under DT Stress. J. Semicond., 2008, 29(11): 2136.

[19]

Sanjeet Kumar Sinha, Saurabh Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device. J. Semicond., 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002

[20]

Xubo Song, Guodong Gu, Shaobo Dun, Yuanjie Lü, Tingting Han, Yuangang Wang, Peng Xu, Zhihong Feng. DC and RF characteristics of enhancement-mode InAlN/GaN HEMT with fluorine treatment. J. Semicond., 2014, 35(4): 044002. doi: 10.1088/1674-4926/35/4/044002

Search

Advanced Search >>

GET CITATION

R R Huo, D L Cai, B Chen, Y F Chen, Y C Wang, Y Q Wang, H Y Wei, Q Wang, Y Y Xia, D Gao, Z T Song. Endurance characteristics of phase change memory cells[J]. J. Semicond., 2016, 37(5): 054009. doi: 10.1088/1674-4926/37/5/054009.

Export: BibTex EndNote

Article Metrics

Article views: 728 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 29 July 2015 Manuscript revised: Online: Published: 01 May 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误