Y P Cang, X L Yao, D Chen, F Yang, H M Yang. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides[J]. J. Semicond., 2016, 37(7): 072002. doi: 10.1088/1674-4926/37/7/072002.
Yuping Cang 1, , Xiaoling Yao 2, , Dong Chen 1, , , Fan Yang 1, and Huiming Yang 1,
Abstract: The ultrasoft pseudo-potential plane wave method combined with the quasi-harmonic approach have been used to study the electronic, elastic and thermodynamic properties of the tetragonal, monoclinic and orthorhombic Ge3N4. The negative formation enthalpies, the satisfactory of Born's criteria and the linear variations of elastic constants with pressure indicate that the three polymorphs can retain their stabilities in the pressure range of 0-25 GPa. The three Ge3N4 are brittle solids at 0 GPa, while they behave in ductile manners in the pressure range of 5-25 GPa. t- and o-Ge3N4 are hard materials but anisotropic. m-Ge3N4 has the largest ductility among the three phases. The results reveal that m-Ge3N4 belongs to an indirect band gap semiconductor, while t- and o-Ge3N4 have direct band gaps. For the thermal properties, several interesting features can be observed above 300 K. o-Ge3N4 exhibits the largest heat capacity, while m-Ge3N4 shows the highest Debye temperature. The results predicted in this work can provide reference data for future experiments.
Key words: density functional theory, elastic moduli, heat capacity, equations of state
Abstract: The ultrasoft pseudo-potential plane wave method combined with the quasi-harmonic approach have been used to study the electronic, elastic and thermodynamic properties of the tetragonal, monoclinic and orthorhombic Ge3N4. The negative formation enthalpies, the satisfactory of Born's criteria and the linear variations of elastic constants with pressure indicate that the three polymorphs can retain their stabilities in the pressure range of 0-25 GPa. The three Ge3N4 are brittle solids at 0 GPa, while they behave in ductile manners in the pressure range of 5-25 GPa. t- and o-Ge3N4 are hard materials but anisotropic. m-Ge3N4 has the largest ductility among the three phases. The results reveal that m-Ge3N4 belongs to an indirect band gap semiconductor, while t- and o-Ge3N4 have direct band gaps. For the thermal properties, several interesting features can be observed above 300 K. o-Ge3N4 exhibits the largest heat capacity, while m-Ge3N4 shows the highest Debye temperature. The results predicted in this work can provide reference data for future experiments.
Key words:
density functional theory, elastic moduli, heat capacity, equations of state
References:
[1] |
Boyko T D, Hunt A, Zerr A. Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4 and Sn3N4 with tunable band gaps:application to light emitting diodes[J]. Phys Rev Lett, 2013, 111(9): 097402. |
[2] |
Lee Y M, Jang S H, Han M. Chemical states and photoluminescence of Si0.3Ge0.7 nitride film formed by N2+ gas[J]. Appl Phys Lett, 2011, 99(12): 123103. |
[3] |
Gao S P, Cai G H, Xu Y. Band structures for Ge3N4 polymorphs studied by DFT-LDA and GWA[J]. Comput Mater Sci, 2013, 67: 292. |
[4] |
Soignard E, McMillan P F. Raman spectroscopy of γ-Si3N4 and γ-Ge3N4 nitride spinel phases formed at high pressure and high temperature:evidence for defect formation in nitride spinels[J]. Chem Mater, 2004, 16(18): 3533. |
[5] |
Serghiou G, Miehe G, Tschauner O. Synthesis of a cubic Ge3N4 phase at high pressure and temperatures[J]. J Chem Phys, 1999, 111: 4659. |
[6] |
Machon D, Meersman F, Wilding M C. Pressure-induced amorphization and polyamorphism:inorganic and biochemical systems[J]. Prog Mater Sci, 2014, 61: 216. |
[7] |
Wang V, He H P, Zhang S L. Influence of Mn concentration on the electronic and magnetic properties of Mn doped β-Ge3N4:a first-principles study[J]. J Magn Magn Mater, 2012, 324(19): 2972. |
[8] |
Ching W Y, Mo S D, Ouyang L Z. Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4, and c-GeSi2N4[J]. Phys Rev B, 2001, 62(24): 245110. |
[9] |
Ding Y C, Xiang A P, Zhu X H. First principles study on electronic and optical properties of Al-doped γ-Ge3N4[J]. Int J Mod Phys B, 2012, 26(32): 1250200. |
[10] |
Wang H, Chen Y, Kaneta Y. First-principles study on effective doping to improve the optical properties in spinel nitrides[J]. J Alloys Compd, 2010, 491(1/2): 550. |
[11] |
He H L, Sekine T, Kobayashi T. Phase transformation of germanium nitride Ge3N4 under shock wave compression[J]. J Appl Phys, 2001, 90: 4403. |
[12] |
Leinenweber K, O'Keeffe M, Somayazulu M. Synthesis and structure refinement of the spinel, γ-Ge3N4[J]. Chem Euro J, 1999, 5(10): 3076. |
[13] |
Wang Z, Zhao Y, Schiferl D. Threshold pressure for disappearance of size-induced effect in spinel-structure Ge3N4 nanocrystals[J]. J Phys Chem B, 2003, 107(51): 14151. |
[14] |
Luo Y S, Cang Y P, Chen D. Determination of the finite-temperature anisotropic elastic and thermal properties of Ge3N4:a first-principles study[J]. Comput Condens Matter, 2014, 1(1): 1. |
[15] |
Cui L, Hu M, Wang Q. Prediction of novel hard phases of Si3N4:first-principles calculations[J]. J Solid State Chem, 2015, 228: 20. |
[16] |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A): A1133. |
[17] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. |
[18] |
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11): 7892. |
[19] |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188. |
[20] |
Shanno D F, Kettler P C. Optimal conditioning of quasi-Newton methods[J]. Math Comput, 1970, 24(111): 657. |
[21] |
Blanco M A, Francisco E, Luańa V. Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model[J]. Comput Phys Commun, 2004, 158(1): 57. |
[22] |
Sahli B, Bouafia H, Abidri B. First-principles prediction of structural, elastic, electronic and thermodynamic properties of the cubic SrUO3-perovskite[J]. J Alloys Compd, 2015, 635: 163. |
[23] |
Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Philos Mag, 1954, 45(7): 823. |
[24] |
Zhang J D, Yang K. Theoretical study of the thermodynamics properties of cubic Zr3N4 and Hf3N4 under high pressures[J]. J Alloys Compd, 2014, 608: 90. |
[25] |
Chen X Q, Niu H Y, Li D Z. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9): 1275. |
[26] |
Milstein F, Zhao J H, Chantasiriwan S. Applicability of Born's stability criterion to face-centered-cubic crystals in [111] loading[J]. Appl Phys Lett, 2005, 87(25): 251919. |
[27] |
Liu Q J, Ran Z, Liu F S. Phase transitions and mechanical stability of TiO2 polymorphs under high pressure[J]. J Alloys Compd, 2015, 631: 192. |
[28] |
Liu Q J, Zhang N C, Sun Y Y. Density-functional theory study of the pressure-induced phase transition in hydronitrogen compound N4H4[J]. Phys Lett A, 2014, 378(18/19): 1333. |
[29] |
Yang J W, Gao T, Guo L Y. Ab initio study of the structural, mechanical, and dynamical properties of the rare-earth dihydrides XH2 (X=Sc, Y, and La)[J]. Physica B, 2013, 429: 119. |
[30] |
Molina B, Sansores L E. Electronic structure of Ge3N4 possible structures[J]. Int J Quant Chem, 2000, 80(2): 249. |
[31] |
Yang M, Wang S J, Feng Y P. Electronic structure of germanium nitride considered for gate dielectrics[J]. J Appl Phys, 2007, 102: 013507. |
[1] |
Boyko T D, Hunt A, Zerr A. Electronic structure of spinel-type nitride compounds Si3N4, Ge3N4 and Sn3N4 with tunable band gaps:application to light emitting diodes[J]. Phys Rev Lett, 2013, 111(9): 097402. |
[2] |
Lee Y M, Jang S H, Han M. Chemical states and photoluminescence of Si0.3Ge0.7 nitride film formed by N2+ gas[J]. Appl Phys Lett, 2011, 99(12): 123103. |
[3] |
Gao S P, Cai G H, Xu Y. Band structures for Ge3N4 polymorphs studied by DFT-LDA and GWA[J]. Comput Mater Sci, 2013, 67: 292. |
[4] |
Soignard E, McMillan P F. Raman spectroscopy of γ-Si3N4 and γ-Ge3N4 nitride spinel phases formed at high pressure and high temperature:evidence for defect formation in nitride spinels[J]. Chem Mater, 2004, 16(18): 3533. |
[5] |
Serghiou G, Miehe G, Tschauner O. Synthesis of a cubic Ge3N4 phase at high pressure and temperatures[J]. J Chem Phys, 1999, 111: 4659. |
[6] |
Machon D, Meersman F, Wilding M C. Pressure-induced amorphization and polyamorphism:inorganic and biochemical systems[J]. Prog Mater Sci, 2014, 61: 216. |
[7] |
Wang V, He H P, Zhang S L. Influence of Mn concentration on the electronic and magnetic properties of Mn doped β-Ge3N4:a first-principles study[J]. J Magn Magn Mater, 2012, 324(19): 2972. |
[8] |
Ching W Y, Mo S D, Ouyang L Z. Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4, and c-GeSi2N4[J]. Phys Rev B, 2001, 62(24): 245110. |
[9] |
Ding Y C, Xiang A P, Zhu X H. First principles study on electronic and optical properties of Al-doped γ-Ge3N4[J]. Int J Mod Phys B, 2012, 26(32): 1250200. |
[10] |
Wang H, Chen Y, Kaneta Y. First-principles study on effective doping to improve the optical properties in spinel nitrides[J]. J Alloys Compd, 2010, 491(1/2): 550. |
[11] |
He H L, Sekine T, Kobayashi T. Phase transformation of germanium nitride Ge3N4 under shock wave compression[J]. J Appl Phys, 2001, 90: 4403. |
[12] |
Leinenweber K, O'Keeffe M, Somayazulu M. Synthesis and structure refinement of the spinel, γ-Ge3N4[J]. Chem Euro J, 1999, 5(10): 3076. |
[13] |
Wang Z, Zhao Y, Schiferl D. Threshold pressure for disappearance of size-induced effect in spinel-structure Ge3N4 nanocrystals[J]. J Phys Chem B, 2003, 107(51): 14151. |
[14] |
Luo Y S, Cang Y P, Chen D. Determination of the finite-temperature anisotropic elastic and thermal properties of Ge3N4:a first-principles study[J]. Comput Condens Matter, 2014, 1(1): 1. |
[15] |
Cui L, Hu M, Wang Q. Prediction of novel hard phases of Si3N4:first-principles calculations[J]. J Solid State Chem, 2015, 228: 20. |
[16] |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A): A1133. |
[17] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. |
[18] |
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11): 7892. |
[19] |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188. |
[20] |
Shanno D F, Kettler P C. Optimal conditioning of quasi-Newton methods[J]. Math Comput, 1970, 24(111): 657. |
[21] |
Blanco M A, Francisco E, Luańa V. Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model[J]. Comput Phys Commun, 2004, 158(1): 57. |
[22] |
Sahli B, Bouafia H, Abidri B. First-principles prediction of structural, elastic, electronic and thermodynamic properties of the cubic SrUO3-perovskite[J]. J Alloys Compd, 2015, 635: 163. |
[23] |
Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Philos Mag, 1954, 45(7): 823. |
[24] |
Zhang J D, Yang K. Theoretical study of the thermodynamics properties of cubic Zr3N4 and Hf3N4 under high pressures[J]. J Alloys Compd, 2014, 608: 90. |
[25] |
Chen X Q, Niu H Y, Li D Z. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9): 1275. |
[26] |
Milstein F, Zhao J H, Chantasiriwan S. Applicability of Born's stability criterion to face-centered-cubic crystals in [111] loading[J]. Appl Phys Lett, 2005, 87(25): 251919. |
[27] |
Liu Q J, Ran Z, Liu F S. Phase transitions and mechanical stability of TiO2 polymorphs under high pressure[J]. J Alloys Compd, 2015, 631: 192. |
[28] |
Liu Q J, Zhang N C, Sun Y Y. Density-functional theory study of the pressure-induced phase transition in hydronitrogen compound N4H4[J]. Phys Lett A, 2014, 378(18/19): 1333. |
[29] |
Yang J W, Gao T, Guo L Y. Ab initio study of the structural, mechanical, and dynamical properties of the rare-earth dihydrides XH2 (X=Sc, Y, and La)[J]. Physica B, 2013, 429: 119. |
[30] |
Molina B, Sansores L E. Electronic structure of Ge3N4 possible structures[J]. Int J Quant Chem, 2000, 80(2): 249. |
[31] |
Yang M, Wang S J, Feng Y P. Electronic structure of germanium nitride considered for gate dielectrics[J]. J Appl Phys, 2007, 102: 013507. |
Y P Cang, X L Yao, D Chen, F Yang, H M Yang. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides[J]. J. Semicond., 2016, 37(7): 072002. doi: 10.1088/1674-4926/37/7/072002.
Article views: 1471 Times PDF downloads: 9 Times Cited by: 0 Times
Manuscript received: 12 November 2015 Manuscript revised: 24 February 2016 Online: Published: 01 July 2016
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2