J. Semicond. > Volume 37 > Issue 7 > Article Number: 074001

Modeling and simulation of carbon nanotube field effect transistor and its circuit application

Amandeep Singh , Dinesh Kumar Saini , Dinesh Agarwal , Sajal Aggarwal , Mamta Khosla and Balwinder Raj

+ Author Affilications + Find other works by these authors

PDF

Abstract: The carbon nanotube field effect transistor (CNTFET) is modelled for circuit application. The model is based on the transport mechanism and it directly relates the transport mechanism with the chirality. Also, it does not consider self consistent equations and thus is used to develop the HSPICE compatible circuit model. For validation of the model, it is applied to the top gate CNTFET structure and the MATLAB simulation results are compared with the simulations of a similar structure created in NanoTCAD ViDES. For demonstrating the circuit compatibility of the model, two circuits viz. inverter and SRAM are designed and simulated in HSPICE. Finally, SRAM performance metrics are compared with those of device simulations from NanoTCAD ViDES.

Key words: carbon nanotubeCNTFETSRAMHSPICENanoTCAD ViDES

Abstract: The carbon nanotube field effect transistor (CNTFET) is modelled for circuit application. The model is based on the transport mechanism and it directly relates the transport mechanism with the chirality. Also, it does not consider self consistent equations and thus is used to develop the HSPICE compatible circuit model. For validation of the model, it is applied to the top gate CNTFET structure and the MATLAB simulation results are compared with the simulations of a similar structure created in NanoTCAD ViDES. For demonstrating the circuit compatibility of the model, two circuits viz. inverter and SRAM are designed and simulated in HSPICE. Finally, SRAM performance metrics are compared with those of device simulations from NanoTCAD ViDES.

Key words: carbon nanotubeCNTFETSRAMHSPICENanoTCAD ViDES



References:

[1]

International Technology Roadmap for Semiconductors (ITRS). 2013 edition. Emerging Research Devices Summary. http://public. itrs. net/ITRS% 2019992014% 20Mtgs% 20 Presentations% 20&% 20Links/2013ITRS/2013 Chapters/2013 ERD Summary. pdf

[2]

User Manual Stanford University CNTFET Model. https://nano.stanford.edu/stanford-cnfet-model-hspice

[3]

Lundstrom M. Is nanoelectronics the future of microelectronics[J]. Proceedings of the 2002 International Symposium on Low Power Electronics and Design, 2002: 172.

[4]

Radosavljevic M, Appenzeller J, Avouris P. High performance of potassium n-doped carbon nanotube field-effect transistors[J]. Appl Phys Lett, 2004, 84(18): 3693.

[5]

Javey A, Tu R, Farmer D B. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts[J]. Nano Lett, 2005, 5(2): 345.

[6]

Lin Y M, Appenzeller J, Avouris P. High-performance carbon nanotube field-effect transistor with tunable polarities[J]. IEEE Trans Nanotechnol, 2005, 4(5): 481.

[7]

Fiori G, Iannaccone G. NanoTCAD ViDES, 2008. http://vides.nanotcad.com/vides

[8]

Guo J, Datta S, Lundstrom M. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors[J]. International Electron Devices Meeting, 2002: 711.

[9]

Wind S J, Appenzeller J, Avouris Ph. Lateral scaling in carbon nanotube field-effect transistors[J]. Phys Rev Lett, 2003, 91(5): 058301.

[10]

Javey A, Guo J, Farmer D B. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics[J]. Nano Lett, 2004, 4(3): 447.

[11]

User Manual, NanoTCAD ViDES, 2008(http://vides. nanotcad. com/vides/documentation/commands-5/dope reservoir)

[12]

Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883.

[13]

Mintmire J W, White C T. Universal density of states for carbon nanotubes[J]. Phys Rev Lett, 1998, 81(12): 2506.

[14]

Streetman B, Sanjay B. Solid state electronics devices. 6th ed. India:Prentice Hall, 2000, 4:89

[15]

Prado J M M. Current transport modeling of carbon nanotube field effect transistors for analysis and design of integrated circuits[J]. PhD Dissertation, Louisiana State University, Baton Rouge, USA, 2008.

[16]

Xia T S, Register L F, Banerjee S K. Quantum transport in carbon nanotube transistors:complex band structure effects[J]. J Appl Phys, 2004, 95(3): 1597.

[17]
[18]

http://www.intechopen. com/books/howtore ference/carbon-nanotubes/fundamental-physical-aspects-of-carbon-nanotube-transistors

[19]

http://www.techconnectworld. com/Microtech 2011/program/pdf/WCM2011-HAbebe.pdf

[20]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuit-compatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2004, 23(10): 1411.

[21]

Hien D S, Luong N T, Tuan T T A. 3D simulation of coaxial carbon nanotube field effect transistor[J]. Journal of Physics:Conference Series, 2009, 187(1): 012061.

[22]

Mishra P, John E, Lin W M. Static noise margin and power dissipation analysis of various SRAM topologies[J]. IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), 2013: 469.

[23]

Pushkarna A, Raghvan S, Mahmoodi H. Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies[J]. IEEE International Proc of SOC Conference (SOCC), 2010: 339.

[24]

Lin S, Kim Y B, Lombardi F. Design of a CNTFET-based SRAM cell by dual-chirality selection[J]. IEEE Trans Nanotechnol, 2010, 9(1): 30.

[1]

International Technology Roadmap for Semiconductors (ITRS). 2013 edition. Emerging Research Devices Summary. http://public. itrs. net/ITRS% 2019992014% 20Mtgs% 20 Presentations% 20&% 20Links/2013ITRS/2013 Chapters/2013 ERD Summary. pdf

[2]

User Manual Stanford University CNTFET Model. https://nano.stanford.edu/stanford-cnfet-model-hspice

[3]

Lundstrom M. Is nanoelectronics the future of microelectronics[J]. Proceedings of the 2002 International Symposium on Low Power Electronics and Design, 2002: 172.

[4]

Radosavljevic M, Appenzeller J, Avouris P. High performance of potassium n-doped carbon nanotube field-effect transistors[J]. Appl Phys Lett, 2004, 84(18): 3693.

[5]

Javey A, Tu R, Farmer D B. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts[J]. Nano Lett, 2005, 5(2): 345.

[6]

Lin Y M, Appenzeller J, Avouris P. High-performance carbon nanotube field-effect transistor with tunable polarities[J]. IEEE Trans Nanotechnol, 2005, 4(5): 481.

[7]

Fiori G, Iannaccone G. NanoTCAD ViDES, 2008. http://vides.nanotcad.com/vides

[8]

Guo J, Datta S, Lundstrom M. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors[J]. International Electron Devices Meeting, 2002: 711.

[9]

Wind S J, Appenzeller J, Avouris Ph. Lateral scaling in carbon nanotube field-effect transistors[J]. Phys Rev Lett, 2003, 91(5): 058301.

[10]

Javey A, Guo J, Farmer D B. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics[J]. Nano Lett, 2004, 4(3): 447.

[11]

User Manual, NanoTCAD ViDES, 2008(http://vides. nanotcad. com/vides/documentation/commands-5/dope reservoir)

[12]

Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883.

[13]

Mintmire J W, White C T. Universal density of states for carbon nanotubes[J]. Phys Rev Lett, 1998, 81(12): 2506.

[14]

Streetman B, Sanjay B. Solid state electronics devices. 6th ed. India:Prentice Hall, 2000, 4:89

[15]

Prado J M M. Current transport modeling of carbon nanotube field effect transistors for analysis and design of integrated circuits[J]. PhD Dissertation, Louisiana State University, Baton Rouge, USA, 2008.

[16]

Xia T S, Register L F, Banerjee S K. Quantum transport in carbon nanotube transistors:complex band structure effects[J]. J Appl Phys, 2004, 95(3): 1597.

[17]
[18]

http://www.intechopen. com/books/howtore ference/carbon-nanotubes/fundamental-physical-aspects-of-carbon-nanotube-transistors

[19]

http://www.techconnectworld. com/Microtech 2011/program/pdf/WCM2011-HAbebe.pdf

[20]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuit-compatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2004, 23(10): 1411.

[21]

Hien D S, Luong N T, Tuan T T A. 3D simulation of coaxial carbon nanotube field effect transistor[J]. Journal of Physics:Conference Series, 2009, 187(1): 012061.

[22]

Mishra P, John E, Lin W M. Static noise margin and power dissipation analysis of various SRAM topologies[J]. IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), 2013: 469.

[23]

Pushkarna A, Raghvan S, Mahmoodi H. Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies[J]. IEEE International Proc of SOC Conference (SOCC), 2010: 339.

[24]

Lin S, Kim Y B, Lombardi F. Design of a CNTFET-based SRAM cell by dual-chirality selection[J]. IEEE Trans Nanotechnol, 2010, 9(1): 30.

[1]

Liu Zheng, Sun Yongjie, Li Shaoqing, Liang Bin. Circuit Simulation of SEU for SRAM Cells. J. Semicond., 2007, 28(1): 138.

[2]

Sanjeet Kumar Sinha, Saurabh Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device. J. Semicond., 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002

[3]

Cong Gaojian, Qi Jiayue. Design of a High-Speed Low-Power 9-Port Register File. J. Semicond., 2007, 28(4): 614.

[4]

Chen Shaofeng, Xia Shanhong, Song Qinglin, Hu Ping' an, Liu Yunqi, Zhu Daoben. Properties of Carbon Nanotube Field Emission. J. Semicond., 2003, 24(S1): 166.

[5]

Xiao Xiaojing, Ye Yun, Zheng Longwu, Guo Tailiang. Improved field emission properties of carbon nanotube cathodes by nickel electroplating and corrosion. J. Semicond., 2012, 33(5): 053004. doi: 10.1088/1674-4926/33/5/053004

[6]

Li Xin, He Yongning, Liu Weihua, Zhu Changchun. Improving Carbon Nanotube Field Emission Display Luminescence Uniformity by Introducing a Reactive Current Limiting Layer. J. Semicond., 2008, 29(3): 574.

[7]

Tanu Goyal, Manoj Kumar Majumder, Brajesh Kumar Kaushik. Propagation delay and power dissipation for different aspect ratio of single-walled carbon nanotube bundled TSV. J. Semicond., 2015, 36(6): 065001. doi: 10.1088/1674-4926/36/6/065001

[8]

Yang Song, Wang Hong, Yang Zhijia. Reducing Leakage of SRAM Using Dual-Gate-Oxide-Thickness Transistors in 45nm Bulk Technology. J. Semicond., 2007, 28(5): 745.

[9]

Yu Kai, Zou Xuecheng, Yu Guoyi, Wang Weixu. Security strategy of powered-off SRAM for resisting physical attack to data remanence. J. Semicond., 2009, 30(9): 095010. doi: 10.1088/1674-4926/30/9/095010

[10]

Xinhong Hong, Liyang Pan, Wendi Zhang, Dongmei Ji, Dong Wu, Chen Shen, Jun Xu. Simulation and research on a 4T-cell based duplication redundancy SRAM for SEU radiation hardening. J. Semicond., 2015, 36(11): 114003. doi: 10.1088/1674-4926/36/11/114003

[11]

R. K. Singh, Neeraj Kr. Shukla, Manisha Pattanaik. Gate leakage current reduction in IP3 SRAM cells at 45 nm CMOS technology for multimedia applications. J. Semicond., 2012, 33(5): 055001. doi: 10.1088/1674-4926/33/5/055001

[12]

Fang Zhou. Transmission line model of carbon nanotubes: through the Boltzmann transport equation. J. Semicond., 2011, 32(6): 062002. doi: 10.1088/1674-4926/32/6/062002

[13]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[14]

Qing Dong, Yinyin Lin. SRAM standby leakage decoupling analysis for different leakage reduction techniques. J. Semicond., 2013, 34(4): 045008. doi: 10.1088/1674-4926/34/4/045008

[15]

Chen Yingping, Shang Liwei, Ji Zhuoyu, Wang Hong, Han Maixing, Liu Xin, Liu Ming. Analytical model for the dispersion of sub-threshold current in organic thin-film transistors. J. Semicond., 2011, 32(11): 114004. doi: 10.1088/1674-4926/32/11/114004

[16]

Wei Wang, Lu Zhang, Xueying Wang, Zhubing Wang, Ting Zhang, Na Li, Xiao Yang, Gongshu Yue. The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs. J. Semicond., 2014, 35(11): 114004. doi: 10.1088/1674-4926/35/11/114004

[17]

Wei Wang, Na Li, Yuzhou Ren, Hao Li, Lifen Zheng, Jin Li, Junjie Jiang, Xiaoping Chen, Kai Wang, Chunping Xia. A computational study of the effects of linear doping profile on the high-frequency and switching performances of hetero-material-gate CNTFETs. J. Semicond., 2013, 34(12): 124002. doi: 10.1088/1674-4926/34/12/124002

[18]

Zhonghua Yang, Guili Liu, Yingdong Qu, Rongde Li. First-principle study on energy gap of CNT superlattice structure. J. Semicond., 2015, 36(10): 102002. doi: 10.1088/1674-4926/36/10/102002

[19]

Harsimran Kaur, Karamjit Singh Sandha. Effect of electric field on metallic SWCNT interconnects for nanoscale technologies. J. Semicond., 2015, 36(3): 035001. doi: 10.1088/1674-4926/36/3/035001

[20]

Neha Gupta, Priyanka Parihar, Vaibhav Neema. Application of source biasing technique for energy efficient DECODER circuit design: memory array application. J. Semicond., 2018, 39(4): 045001. doi: 10.1088/1674-4926/39/4/045001

Search

Advanced Search >>

GET CITATION

A m and E Singh, D K Saini, D Agarwal, S Aggarwal, M Khosla, B Raj. Modeling and simulation of carbon nanotube field effect transistor and its circuit application[J]. J. Semicond., 2016, 37(7): 074001. doi: 10.1088/1674-4926/37/7/074001.

Export: BibTex EndNote

Article Metrics

Article views: 898 Times PDF downloads: 16 Times Cited by: 0 Times

History

Manuscript received: 22 September 2015 Manuscript revised: Online: Published: 01 July 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误