J. Semicond. > Volume 37 > Issue 7 > Article Number: 074001

Modeling and simulation of carbon nanotube field effect transistor and its circuit application

Amandeep Singh , Dinesh Kumar Saini , Dinesh Agarwal , Sajal Aggarwal , Mamta Khosla and Balwinder Raj

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The carbon nanotube field effect transistor (CNTFET) is modelled for circuit application. The model is based on the transport mechanism and it directly relates the transport mechanism with the chirality. Also, it does not consider self consistent equations and thus is used to develop the HSPICE compatible circuit model. For validation of the model, it is applied to the top gate CNTFET structure and the MATLAB simulation results are compared with the simulations of a similar structure created in NanoTCAD ViDES. For demonstrating the circuit compatibility of the model, two circuits viz. inverter and SRAM are designed and simulated in HSPICE. Finally, SRAM performance metrics are compared with those of device simulations from NanoTCAD ViDES.

Key words: carbon nanotubeCNTFETSRAMHSPICENanoTCAD ViDES

Abstract: The carbon nanotube field effect transistor (CNTFET) is modelled for circuit application. The model is based on the transport mechanism and it directly relates the transport mechanism with the chirality. Also, it does not consider self consistent equations and thus is used to develop the HSPICE compatible circuit model. For validation of the model, it is applied to the top gate CNTFET structure and the MATLAB simulation results are compared with the simulations of a similar structure created in NanoTCAD ViDES. For demonstrating the circuit compatibility of the model, two circuits viz. inverter and SRAM are designed and simulated in HSPICE. Finally, SRAM performance metrics are compared with those of device simulations from NanoTCAD ViDES.

Key words: carbon nanotubeCNTFETSRAMHSPICENanoTCAD ViDES



References:

[1]

International Technology Roadmap for Semiconductors (ITRS). 2013 edition. Emerging Research Devices Summary. http://public. itrs. net/ITRS% 2019992014% 20Mtgs% 20 Presentations% 20&% 20Links/2013ITRS/2013 Chapters/2013 ERD Summary. pdf

[2]

User Manual Stanford University CNTFET Model. https://nano.stanford.edu/stanford-cnfet-model-hspice

[3]

Lundstrom M. Is nanoelectronics the future of microelectronics[J]. Proceedings of the 2002 International Symposium on Low Power Electronics and Design, 2002: 172.

[4]

Radosavljevic M, Appenzeller J, Avouris P. High performance of potassium n-doped carbon nanotube field-effect transistors[J]. Appl Phys Lett, 2004, 84(18): 3693.

[5]

Javey A, Tu R, Farmer D B. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts[J]. Nano Lett, 2005, 5(2): 345.

[6]

Lin Y M, Appenzeller J, Avouris P. High-performance carbon nanotube field-effect transistor with tunable polarities[J]. IEEE Trans Nanotechnol, 2005, 4(5): 481.

[7]

Fiori G, Iannaccone G. NanoTCAD ViDES, 2008. http://vides.nanotcad.com/vides

[8]

Guo J, Datta S, Lundstrom M. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors[J]. International Electron Devices Meeting, 2002: 711.

[9]

Wind S J, Appenzeller J, Avouris Ph. Lateral scaling in carbon nanotube field-effect transistors[J]. Phys Rev Lett, 2003, 91(5): 058301.

[10]

Javey A, Guo J, Farmer D B. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics[J]. Nano Lett, 2004, 4(3): 447.

[11]

User Manual, NanoTCAD ViDES, 2008(http://vides. nanotcad. com/vides/documentation/commands-5/dope reservoir)

[12]

Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883.

[13]

Mintmire J W, White C T. Universal density of states for carbon nanotubes[J]. Phys Rev Lett, 1998, 81(12): 2506.

[14]

Streetman B, Sanjay B. Solid state electronics devices. 6th ed. India:Prentice Hall, 2000, 4:89

[15]

Prado J M M. Current transport modeling of carbon nanotube field effect transistors for analysis and design of integrated circuits[J]. PhD Dissertation, Louisiana State University, Baton Rouge, USA, 2008.

[16]

Xia T S, Register L F, Banerjee S K. Quantum transport in carbon nanotube transistors:complex band structure effects[J]. J Appl Phys, 2004, 95(3): 1597.

[17]
[18]

http://www.intechopen. com/books/howtore ference/carbon-nanotubes/fundamental-physical-aspects-of-carbon-nanotube-transistors

[19]

http://www.techconnectworld. com/Microtech 2011/program/pdf/WCM2011-HAbebe.pdf

[20]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuit-compatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2004, 23(10): 1411.

[21]

Hien D S, Luong N T, Tuan T T A. 3D simulation of coaxial carbon nanotube field effect transistor[J]. Journal of Physics:Conference Series, 2009, 187(1): 012061.

[22]

Mishra P, John E, Lin W M. Static noise margin and power dissipation analysis of various SRAM topologies[J]. IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), 2013: 469.

[23]

Pushkarna A, Raghvan S, Mahmoodi H. Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies[J]. IEEE International Proc of SOC Conference (SOCC), 2010: 339.

[24]

Lin S, Kim Y B, Lombardi F. Design of a CNTFET-based SRAM cell by dual-chirality selection[J]. IEEE Trans Nanotechnol, 2010, 9(1): 30.

[1]

International Technology Roadmap for Semiconductors (ITRS). 2013 edition. Emerging Research Devices Summary. http://public. itrs. net/ITRS% 2019992014% 20Mtgs% 20 Presentations% 20&% 20Links/2013ITRS/2013 Chapters/2013 ERD Summary. pdf

[2]

User Manual Stanford University CNTFET Model. https://nano.stanford.edu/stanford-cnfet-model-hspice

[3]

Lundstrom M. Is nanoelectronics the future of microelectronics[J]. Proceedings of the 2002 International Symposium on Low Power Electronics and Design, 2002: 172.

[4]

Radosavljevic M, Appenzeller J, Avouris P. High performance of potassium n-doped carbon nanotube field-effect transistors[J]. Appl Phys Lett, 2004, 84(18): 3693.

[5]

Javey A, Tu R, Farmer D B. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts[J]. Nano Lett, 2005, 5(2): 345.

[6]

Lin Y M, Appenzeller J, Avouris P. High-performance carbon nanotube field-effect transistor with tunable polarities[J]. IEEE Trans Nanotechnol, 2005, 4(5): 481.

[7]

Fiori G, Iannaccone G. NanoTCAD ViDES, 2008. http://vides.nanotcad.com/vides

[8]

Guo J, Datta S, Lundstrom M. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors[J]. International Electron Devices Meeting, 2002: 711.

[9]

Wind S J, Appenzeller J, Avouris Ph. Lateral scaling in carbon nanotube field-effect transistors[J]. Phys Rev Lett, 2003, 91(5): 058301.

[10]

Javey A, Guo J, Farmer D B. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics[J]. Nano Lett, 2004, 4(3): 447.

[11]

User Manual, NanoTCAD ViDES, 2008(http://vides. nanotcad. com/vides/documentation/commands-5/dope reservoir)

[12]

Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883.

[13]

Mintmire J W, White C T. Universal density of states for carbon nanotubes[J]. Phys Rev Lett, 1998, 81(12): 2506.

[14]

Streetman B, Sanjay B. Solid state electronics devices. 6th ed. India:Prentice Hall, 2000, 4:89

[15]

Prado J M M. Current transport modeling of carbon nanotube field effect transistors for analysis and design of integrated circuits[J]. PhD Dissertation, Louisiana State University, Baton Rouge, USA, 2008.

[16]

Xia T S, Register L F, Banerjee S K. Quantum transport in carbon nanotube transistors:complex band structure effects[J]. J Appl Phys, 2004, 95(3): 1597.

[17]
[18]

http://www.intechopen. com/books/howtore ference/carbon-nanotubes/fundamental-physical-aspects-of-carbon-nanotube-transistors

[19]

http://www.techconnectworld. com/Microtech 2011/program/pdf/WCM2011-HAbebe.pdf

[20]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuit-compatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2004, 23(10): 1411.

[21]

Hien D S, Luong N T, Tuan T T A. 3D simulation of coaxial carbon nanotube field effect transistor[J]. Journal of Physics:Conference Series, 2009, 187(1): 012061.

[22]

Mishra P, John E, Lin W M. Static noise margin and power dissipation analysis of various SRAM topologies[J]. IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), 2013: 469.

[23]

Pushkarna A, Raghvan S, Mahmoodi H. Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies[J]. IEEE International Proc of SOC Conference (SOCC), 2010: 339.

[24]

Lin S, Kim Y B, Lombardi F. Design of a CNTFET-based SRAM cell by dual-chirality selection[J]. IEEE Trans Nanotechnol, 2010, 9(1): 30.

Search

Advanced Search >>

GET CITATION

A m and E Singh, D K Saini, D Agarwal, S Aggarwal, M Khosla, B Raj. Modeling and simulation of carbon nanotube field effect transistor and its circuit application[J]. J. Semicond., 2016, 37(7): 074001. doi: 10.1088/1674-4926/37/7/074001.

Export: BibTex EndNote

Article Metrics

Article views: 2160 Times PDF downloads: 30 Times Cited by: 0 Times

History

Manuscript received: 22 September 2015 Manuscript revised: Online: Published: 01 July 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误