J. Semicond. > Volume 37 > Issue 8 > Article Number: 083002

Preparation and photocatalytic activities of 3D flower-like CuO nanostructures

Qingfei Fan 1, , , Qi Lan 1, , Meili Zhang 1, , Ximei Fan 1, , Zuowan Zhou 1, and Chaoliang Zhang 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Hierarchical 3D flower-like CuO nanostructures on the Cu substrates were synthesized by a wet chemical method and subsequent heat treatment. The synthesis, structure and morphologies of obtained samples under different concentrations of Na2S2O3 were investigated in detail and the possible growth mechanisms of the 3D flower-like CuO nanostructures were discussed. Na2S2O3 plays a key role in the generation of the 3D flower-like CuO nanostructures. When the concentration of Na2S2O3 is more than 0.4 mol/L, the 3D flower-like CuO nanostructures can be prepared on the Cu foils. The photocatalytic performances were studied by analyzing the degradation of methyl orange (MO) in aqueous solution in the presence of hydroxide water (H2O2). The 3D flower-like CuO nanostructures exhibit higher photocatalytic activity (96.2% degradation rate) than commercial CuO particles (36.3% degradation rate). The origin of the higher photocatalytic activity of the 3D flower-like CuO nanostructures was also discussed.

Key words: copper oxidenanostructureswet chemical methodphotocatalytic activitymethyl orange

Abstract: Hierarchical 3D flower-like CuO nanostructures on the Cu substrates were synthesized by a wet chemical method and subsequent heat treatment. The synthesis, structure and morphologies of obtained samples under different concentrations of Na2S2O3 were investigated in detail and the possible growth mechanisms of the 3D flower-like CuO nanostructures were discussed. Na2S2O3 plays a key role in the generation of the 3D flower-like CuO nanostructures. When the concentration of Na2S2O3 is more than 0.4 mol/L, the 3D flower-like CuO nanostructures can be prepared on the Cu foils. The photocatalytic performances were studied by analyzing the degradation of methyl orange (MO) in aqueous solution in the presence of hydroxide water (H2O2). The 3D flower-like CuO nanostructures exhibit higher photocatalytic activity (96.2% degradation rate) than commercial CuO particles (36.3% degradation rate). The origin of the higher photocatalytic activity of the 3D flower-like CuO nanostructures was also discussed.

Key words: copper oxidenanostructureswet chemical methodphotocatalytic activitymethyl orange



References:

[1]

Hu X, Yu J C. Continuous aspect-ratio tuning and fine shape control of monodisperseα-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method[J]. Adv Funct Mater, 2008, 18(6): 880. doi: 10.1002/(ISSN)1616-3028

[2]

Shpaisman N, Givan U, Patolsky F. Electrochemical synthesis of morphology controlled segmented CdSe nanowires[J]. ACS Nano, 2010, 4(4): 1901. doi: 10.1021/nn901661z

[3]

Faisal M, Khan S B, Rahman M M. Ethanol chemi-sensor: evaluation of structural, optical and sensing properties of CuO nanosheets[J]. Mater Lett, 2011, 65(9): 1400. doi: 10.1016/j.matlet.2011.02.013

[4]

Liu Y, Liao L, Li J. From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties[J]. J Phys Chem C, 2007, 111(13): 5050. doi: 10.1021/jp069043d

[5]

Wang W, Zhan Y, Wang G. One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant[J]. Chem Commum, 2001(8): 727. doi: 10.1039/b008215p

[6]

Cao M, Hu C, Wang Y. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods[J]. Chem Commum, 2003(15): 1884. doi: 10.1039/b304505f

[7]

Hübner M, Simion C E, Tomescu-Stănoiu A. Influence of humidity on CO sensing with p-type CuO thick film gas sensors[J]. Sens Actuators B, 2011, 153(2): 347. doi: 10.1016/j.snb.2010.10.046

[8]

Zhou L P, Wang B X, Peng X F. On the specific heat capacity of CuO nanofluid[J]. Adv Mech Eng, 2010, 2: 172085.

[9]

Wang S B, Hsiao C H, Chang S J. A CuO nanowire infrared photodetector[J]. Sens Actuators A, 2011, 171(2): 207. doi: 10.1016/j.sna.2011.09.011

[10]

Zhu Y W, Yu T, Cheong F C. Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films[J]. Nanotechnology, 2005, 16(1): 88. doi: 10.1088/0957-4484/16/1/018

[11]

Hu Liqin, Zhang Dian, Hu Hailong. Field electron emission from structure-controlled one-dimensional CuO arrays synthesized by wet chemical process[J]. Journal of Semiconductors, 2014, 35(7): 073003. doi: 10.1088/1674-4926/35/7/073003

[12]

Anandan S, Wen X, Yang S. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells[J]. Mater Chem Phys, 2005, 93(1): 35. doi: 10.1016/j.matchemphys.2005.02.002

[13]

Zhang X, Shi W, Zhu J. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes[J]. ACS Nano, 2011, 5(3): 2013. doi: 10.1021/nn1030719

[14]

Sun S, Chen A, Sun Y. Nanoporous copper oxide ribbons assembly of free-standing nanoneedles as biosensors for glucose[J]. Analyst, 2015, 140: 5205. doi: 10.1039/C5AN00609K

[15]

Liu J, Jin J, Deng Z. Tailoring CuO nanostructures for enhanced photocatalytic property[J]. J Colloid Interface Sci, 2012, 384(1): 1. doi: 10.1016/j.jcis.2012.06.044

[16]

Zhang D W, Chen C H, Zhang J. Novel electrochemical milling method to fabricate copper nanoparticles and nanofibers[J]. Chem Mater, 2005, 17(21): 5242. doi: 10.1021/cm051584c

[17]

Ziolo J, Borsa F, Corti M. Cu nuclear quadrupole resonance and magnetic phase transition in CuO[J]. J Appl Phys, 1990, 67(9): 5864. doi: 10.1063/1.345996

[18]

Zhou K, Wang R, Xu B. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes[J]. Nanotechnology, 2006, 17(15): 3939. doi: 10.1088/0957-4484/17/15/055

[19]

Jia W, Liu Y, Hu P. Ultrathin CuO nanorods: controllable synthesis and superior catalytic properties in styrene epoxidation[J]. Chem Commun, 2015, 51(42): 8817. doi: 10.1039/C5CC02480C

[20]

Zhong Z, Ng V, Luo J. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture[J]. Langmuir, 2007, 23(11): 5971. doi: 10.1021/la063344x

[21]

Liu J, Huang X, Li Y. Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology[J]. Cryst Growth Des, 2006, 6(7): 1690. doi: 10.1021/cg060198k

[22]

Yu Y, Zhang J. Solution-phase synthesis of rose-like CuO[J]. Mater Lett, 2009, 63(21): 1840. doi: 10.1016/j.matlet.2009.05.061

[23]

Zhang X, Wang G, Liu X. Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors[J]. J Phys Chem C, 2008, 112(43): 16845. doi: 10.1021/jp806985k

[24]

Wang G, Gu A, Wang W. Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection[J]. Electrochem Commun, 2009, 11(3): 631. doi: 10.1016/j.elecom.2008.12.061

[25]

Umar A, Rahman M M, Al-Hajry A. Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets[J]. Electrochem Commun, 2009, 11(2): 278. doi: 10.1016/j.elecom.2008.11.027

[26]

Wang W, Zhang L, Tong S. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination[J]. Biosens Bioelectron, 2009, 25(4): 708. doi: 10.1016/j.bios.2009.08.013

[27]

Pan Q, Jin H, Wang H. Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance[J]. Electrochimica Acta, 2007, 53(2): 951. doi: 10.1016/j.electacta.2007.08.004

[28]

Yu L, Zhang G, Wu Y. Cupric oxide nanoflowers synthesized with a simple solution route and their field emission[J]. J Cryst Growth, 2008, 310(12): 3125. doi: 10.1016/j.jcrysgro.2008.03.026

[29]

Koshy J, Soosen S M, Chandran A. Correlated barrier hopping of CuO nanoparticles[J]. Journal of Semiconductors, 2015, 36(12): 122003. doi: 10.1088/1674-4926/36/12/122003

[30]

Sun S, Zhang X, Zhang J. Surfactant-free CuO mesocrystals with controllable dimensions: green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances[J]. Cryst Eng Comm, 2013, 15(5): 867. doi: 10.1039/C2CE26216A

[31]

Liu Y, Chu Y, Zhuo Y. Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils[J]. Cryst Growth Des, 2007, 7(3): 467. doi: 10.1021/cg060480r

[32]

Zou G, Li H, Zhang D. Well-aligned arrays of CuO nanoplatelets[J]. J Phys Chem B, 2006, 110(4): 1632. doi: 10.1021/jp0557363

[33]

Chu D Q, Mao B G, Wang L M. Microemulsion-based synthesis of hierarchical 3D flowerlike CuO nanostructures[J]. Mater Lett, 2013, 105: 151. doi: 10.1016/j.matlet.2013.04.067

[34]

Jana S, Das S, Das N S. CuO nanostructures on copper foil by a simple wet chemical route at room temperature[J]. Mater Res Bull, 2010, 45(6): 693. doi: 10.1016/j.materresbull.2010.02.014

[35]

Wang W, Lan C, Li Y. A simple wet chemical route for large-scale synthesis of Cu(OH)2 nanowires[J]. Chem Phys Lett, 2002, 366(3): 220.

[36]

Wang Z L, Kong X Y, Wen X. In situ structure evolution from Cu(OH)2 nanobelts to copper nanowires[J]. J Phys Chem B, 2003, 107(33): 8275. doi: 10.1021/jp035557q

[37]

Sun F, Qiao X, Tan F. Fabrication and photocatalytic activities of ZnO arrays with different nanostructures[J]. Appl Surf Sci, 2012, 263: 704. doi: 10.1016/j.apsusc.2012.09.144

[38]

Ethiraj A S, Kang D J. Synthesis and characterization of CuO nanowires by a simple wet chemical method[J]. Nanoscale Res Lett, 2012, 7(1): 1. doi: 10.1186/1556-276X-7-1

[39]

Zhang H, Yang D, Ma X. Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process[J]. Nanotechnology, 2004, 15(5): 622. doi: 10.1088/0957-4484/15/5/037

[40]

Liu H, Wu X, Li X. Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts[J]. Chin J Catal, 2014, 35(12): 1997. doi: 10.1016/S1872-2067(14)60198-4

[41]

Li B, Wang Y. Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite[J]. Superlattice Microstruct, 2010, 47(5): 615. doi: 10.1016/j.spmi.2010.02.005

[42]

Ai Z, Zhang L, Lee S. Interfacial hydrothermal synthesis of Cu@ Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity[J]. J Phys Chem C, 2009, 113(49): 20896. doi: 10.1021/jp9083647

[43]

Borgohain K, Murase N, Mahamuni S. Synthesis and properties of Cu2O quantum particles[J]. J Appl Phys, 2002, 92(3): 1292. doi: 10.1063/1.1491020

[44]

Jin Y, Cui Q, Wang K. Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals[J]. J Appl Phys, 2011, 109(5): 053521. doi: 10.1063/1.3549826

[45]

Wang H, Xu J Z, Zhu J J. Preparation of CuO nanoparticles by microwave irradiation[J]. J Cryst Growth, 2002, 244(1): 88. doi: 10.1016/S0022-0248(02)01571-3

[46]

Wang Y, Jiang T, Meng D. Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method[J]. Appl Surf Sci, 2015, 355: 191. doi: 10.1016/j.apsusc.2015.07.122

[47]

Chen W, Hong L, Liu A L. Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic[J]. Talanta, 2012, 99: 643. doi: 10.1016/j.talanta.2012.06.061

[48]

Li H, Liao J, Zeng T. A facile synthesis of CuO nanowires and nanorods, and their catalytic activity in the oxidative degradation of Rhodamine B with hydrogen peroxide[J]. Catal Commun, 2014, 46: 169. doi: 10.1016/j.catcom.2013.12.008

[49]

Liao J, Li H, Zhang X. Facile fabrication of Ti supported CuO film composed of bamboo-leaf-like nanosheets and their high catalytic performance in the oxidative degradation of methylene blue with hydrogen peroxide[J]. Appl Catal A, 2015, 491: 94. doi: 10.1016/j.apcata.2014.11.042

[50]

Elechiguerra J L, Reyes-Gasga J, Yacaman M J. The role of twinning in shape evolution of anisotropic noble metal nanostructures[J]. J Mater Chem, 2006, 16(40): 3906. doi: 10.1039/b607128g

[51]

Shi J, Li J, Huang X. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra[J]. Nano Research, 2011, 4(5): 448. doi: 10.1007/s12274-011-0101-5

[1]

Hu X, Yu J C. Continuous aspect-ratio tuning and fine shape control of monodisperseα-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method[J]. Adv Funct Mater, 2008, 18(6): 880. doi: 10.1002/(ISSN)1616-3028

[2]

Shpaisman N, Givan U, Patolsky F. Electrochemical synthesis of morphology controlled segmented CdSe nanowires[J]. ACS Nano, 2010, 4(4): 1901. doi: 10.1021/nn901661z

[3]

Faisal M, Khan S B, Rahman M M. Ethanol chemi-sensor: evaluation of structural, optical and sensing properties of CuO nanosheets[J]. Mater Lett, 2011, 65(9): 1400. doi: 10.1016/j.matlet.2011.02.013

[4]

Liu Y, Liao L, Li J. From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties[J]. J Phys Chem C, 2007, 111(13): 5050. doi: 10.1021/jp069043d

[5]

Wang W, Zhan Y, Wang G. One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant[J]. Chem Commum, 2001(8): 727. doi: 10.1039/b008215p

[6]

Cao M, Hu C, Wang Y. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods[J]. Chem Commum, 2003(15): 1884. doi: 10.1039/b304505f

[7]

Hübner M, Simion C E, Tomescu-Stănoiu A. Influence of humidity on CO sensing with p-type CuO thick film gas sensors[J]. Sens Actuators B, 2011, 153(2): 347. doi: 10.1016/j.snb.2010.10.046

[8]

Zhou L P, Wang B X, Peng X F. On the specific heat capacity of CuO nanofluid[J]. Adv Mech Eng, 2010, 2: 172085.

[9]

Wang S B, Hsiao C H, Chang S J. A CuO nanowire infrared photodetector[J]. Sens Actuators A, 2011, 171(2): 207. doi: 10.1016/j.sna.2011.09.011

[10]

Zhu Y W, Yu T, Cheong F C. Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films[J]. Nanotechnology, 2005, 16(1): 88. doi: 10.1088/0957-4484/16/1/018

[11]

Hu Liqin, Zhang Dian, Hu Hailong. Field electron emission from structure-controlled one-dimensional CuO arrays synthesized by wet chemical process[J]. Journal of Semiconductors, 2014, 35(7): 073003. doi: 10.1088/1674-4926/35/7/073003

[12]

Anandan S, Wen X, Yang S. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells[J]. Mater Chem Phys, 2005, 93(1): 35. doi: 10.1016/j.matchemphys.2005.02.002

[13]

Zhang X, Shi W, Zhu J. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes[J]. ACS Nano, 2011, 5(3): 2013. doi: 10.1021/nn1030719

[14]

Sun S, Chen A, Sun Y. Nanoporous copper oxide ribbons assembly of free-standing nanoneedles as biosensors for glucose[J]. Analyst, 2015, 140: 5205. doi: 10.1039/C5AN00609K

[15]

Liu J, Jin J, Deng Z. Tailoring CuO nanostructures for enhanced photocatalytic property[J]. J Colloid Interface Sci, 2012, 384(1): 1. doi: 10.1016/j.jcis.2012.06.044

[16]

Zhang D W, Chen C H, Zhang J. Novel electrochemical milling method to fabricate copper nanoparticles and nanofibers[J]. Chem Mater, 2005, 17(21): 5242. doi: 10.1021/cm051584c

[17]

Ziolo J, Borsa F, Corti M. Cu nuclear quadrupole resonance and magnetic phase transition in CuO[J]. J Appl Phys, 1990, 67(9): 5864. doi: 10.1063/1.345996

[18]

Zhou K, Wang R, Xu B. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes[J]. Nanotechnology, 2006, 17(15): 3939. doi: 10.1088/0957-4484/17/15/055

[19]

Jia W, Liu Y, Hu P. Ultrathin CuO nanorods: controllable synthesis and superior catalytic properties in styrene epoxidation[J]. Chem Commun, 2015, 51(42): 8817. doi: 10.1039/C5CC02480C

[20]

Zhong Z, Ng V, Luo J. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture[J]. Langmuir, 2007, 23(11): 5971. doi: 10.1021/la063344x

[21]

Liu J, Huang X, Li Y. Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology[J]. Cryst Growth Des, 2006, 6(7): 1690. doi: 10.1021/cg060198k

[22]

Yu Y, Zhang J. Solution-phase synthesis of rose-like CuO[J]. Mater Lett, 2009, 63(21): 1840. doi: 10.1016/j.matlet.2009.05.061

[23]

Zhang X, Wang G, Liu X. Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors[J]. J Phys Chem C, 2008, 112(43): 16845. doi: 10.1021/jp806985k

[24]

Wang G, Gu A, Wang W. Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection[J]. Electrochem Commun, 2009, 11(3): 631. doi: 10.1016/j.elecom.2008.12.061

[25]

Umar A, Rahman M M, Al-Hajry A. Enzymatic glucose biosensor based on flower-shaped copper oxide nanostructures composed of thin nanosheets[J]. Electrochem Commun, 2009, 11(2): 278. doi: 10.1016/j.elecom.2008.11.027

[26]

Wang W, Zhang L, Tong S. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination[J]. Biosens Bioelectron, 2009, 25(4): 708. doi: 10.1016/j.bios.2009.08.013

[27]

Pan Q, Jin H, Wang H. Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance[J]. Electrochimica Acta, 2007, 53(2): 951. doi: 10.1016/j.electacta.2007.08.004

[28]

Yu L, Zhang G, Wu Y. Cupric oxide nanoflowers synthesized with a simple solution route and their field emission[J]. J Cryst Growth, 2008, 310(12): 3125. doi: 10.1016/j.jcrysgro.2008.03.026

[29]

Koshy J, Soosen S M, Chandran A. Correlated barrier hopping of CuO nanoparticles[J]. Journal of Semiconductors, 2015, 36(12): 122003. doi: 10.1088/1674-4926/36/12/122003

[30]

Sun S, Zhang X, Zhang J. Surfactant-free CuO mesocrystals with controllable dimensions: green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances[J]. Cryst Eng Comm, 2013, 15(5): 867. doi: 10.1039/C2CE26216A

[31]

Liu Y, Chu Y, Zhuo Y. Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils[J]. Cryst Growth Des, 2007, 7(3): 467. doi: 10.1021/cg060480r

[32]

Zou G, Li H, Zhang D. Well-aligned arrays of CuO nanoplatelets[J]. J Phys Chem B, 2006, 110(4): 1632. doi: 10.1021/jp0557363

[33]

Chu D Q, Mao B G, Wang L M. Microemulsion-based synthesis of hierarchical 3D flowerlike CuO nanostructures[J]. Mater Lett, 2013, 105: 151. doi: 10.1016/j.matlet.2013.04.067

[34]

Jana S, Das S, Das N S. CuO nanostructures on copper foil by a simple wet chemical route at room temperature[J]. Mater Res Bull, 2010, 45(6): 693. doi: 10.1016/j.materresbull.2010.02.014

[35]

Wang W, Lan C, Li Y. A simple wet chemical route for large-scale synthesis of Cu(OH)2 nanowires[J]. Chem Phys Lett, 2002, 366(3): 220.

[36]

Wang Z L, Kong X Y, Wen X. In situ structure evolution from Cu(OH)2 nanobelts to copper nanowires[J]. J Phys Chem B, 2003, 107(33): 8275. doi: 10.1021/jp035557q

[37]

Sun F, Qiao X, Tan F. Fabrication and photocatalytic activities of ZnO arrays with different nanostructures[J]. Appl Surf Sci, 2012, 263: 704. doi: 10.1016/j.apsusc.2012.09.144

[38]

Ethiraj A S, Kang D J. Synthesis and characterization of CuO nanowires by a simple wet chemical method[J]. Nanoscale Res Lett, 2012, 7(1): 1. doi: 10.1186/1556-276X-7-1

[39]

Zhang H, Yang D, Ma X. Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process[J]. Nanotechnology, 2004, 15(5): 622. doi: 10.1088/0957-4484/15/5/037

[40]

Liu H, Wu X, Li X. Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts[J]. Chin J Catal, 2014, 35(12): 1997. doi: 10.1016/S1872-2067(14)60198-4

[41]

Li B, Wang Y. Facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite[J]. Superlattice Microstruct, 2010, 47(5): 615. doi: 10.1016/j.spmi.2010.02.005

[42]

Ai Z, Zhang L, Lee S. Interfacial hydrothermal synthesis of Cu@ Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity[J]. J Phys Chem C, 2009, 113(49): 20896. doi: 10.1021/jp9083647

[43]

Borgohain K, Murase N, Mahamuni S. Synthesis and properties of Cu2O quantum particles[J]. J Appl Phys, 2002, 92(3): 1292. doi: 10.1063/1.1491020

[44]

Jin Y, Cui Q, Wang K. Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals[J]. J Appl Phys, 2011, 109(5): 053521. doi: 10.1063/1.3549826

[45]

Wang H, Xu J Z, Zhu J J. Preparation of CuO nanoparticles by microwave irradiation[J]. J Cryst Growth, 2002, 244(1): 88. doi: 10.1016/S0022-0248(02)01571-3

[46]

Wang Y, Jiang T, Meng D. Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method[J]. Appl Surf Sci, 2015, 355: 191. doi: 10.1016/j.apsusc.2015.07.122

[47]

Chen W, Hong L, Liu A L. Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic[J]. Talanta, 2012, 99: 643. doi: 10.1016/j.talanta.2012.06.061

[48]

Li H, Liao J, Zeng T. A facile synthesis of CuO nanowires and nanorods, and their catalytic activity in the oxidative degradation of Rhodamine B with hydrogen peroxide[J]. Catal Commun, 2014, 46: 169. doi: 10.1016/j.catcom.2013.12.008

[49]

Liao J, Li H, Zhang X. Facile fabrication of Ti supported CuO film composed of bamboo-leaf-like nanosheets and their high catalytic performance in the oxidative degradation of methylene blue with hydrogen peroxide[J]. Appl Catal A, 2015, 491: 94. doi: 10.1016/j.apcata.2014.11.042

[50]

Elechiguerra J L, Reyes-Gasga J, Yacaman M J. The role of twinning in shape evolution of anisotropic noble metal nanostructures[J]. J Mater Chem, 2006, 16(40): 3906. doi: 10.1039/b607128g

[51]

Shi J, Li J, Huang X. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra[J]. Nano Research, 2011, 4(5): 448. doi: 10.1007/s12274-011-0101-5

[1]

Yingjie Ma, Tong Zhou, Zhenyang Zhong, Zuimin Jiang. Controllable growth of GeSi nanostructures by molecular beam epitaxy. J. Semicond., 2018, 39(6): 061004. doi: 10.1088/1674-4926/39/6/061004

[2]

Muhammad Tariq Saeed Chani, Sher Bahadar Khan, Kh. S. Karimov, M. Abid, Abdullah M. Asiri, Kalsoom Akhtar. Synthesis of metal oxide composite nanosheets and their pressure sensing properties. J. Semicond., 2015, 36(2): 023002. doi: 10.1088/1674-4926/36/2/023002

[3]

Fuxue Wang, Xiaolong Cai, Dawei Yan, Zhaomin Zhu, Xiaofeng Gu. Luminescence properties of tetrapod ZnO nanostructures. J. Semicond., 2014, 35(6): 063004. doi: 10.1088/1674-4926/35/6/063004

[4]

Priyal Jain, P. Arun. Parameters influencing the optical properties of SnS thin films. J. Semicond., 2013, 34(9): 093004. doi: 10.1088/1674-4926/34/9/093004

[5]

Najdia Benaziez, Abdelhamid Ounissi, Safia Benaziez. Enhancement of solar cells parameters by periodic nanocylinders. J. Semicond., 2016, 37(6): 064004. doi: 10.1088/1674-4926/37/6/064004

[6]

Liu Li, Feng Yingliang, Yu Lianxiang, Wang Lianyuan, Zhang Tong. Preparation and Acetone Sensing Properties of Flower-Like ZnO Nanorods. J. Semicond., 2008, 29(12): 2372.

[7]

Yue Shuanglin, Xu Tingting, Li Wei, Yan Ji, Yi He. Tungsten oxide nanostructures: controllable growth and field emission. J. Semicond., 2012, 33(6): 063002. doi: 10.1088/1674-4926/33/6/063002

[8]

Han Weiqing, Zhou Gang, Wang Lianjun, Sun Xiuyun, Li Jiansheng. Fabrication of Tin Oxide Porous Nanostructures on Titanium by Anodization and Electroplating. J. Semicond., 2006, 27(12): 2134.

[9]

G. R. A. Kumara, U. Deshapriya, C. S. K. Ranasinghe, E. N. Jayaweera, R. M. G. Rajapakse. Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye. J. Semicond., 2018, 39(3): 033005. doi: 10.1088/1674-4926/39/3/033005

[10]

Hongfei Lin, Yujiao Huang, Shaoni Li, Chunhui Luan, Wei Huang, Xiaodong Wang, Xianshe Feng. Preparation of erbium ion-doped TiO2 films and the study of their photocatalytic activity under simulated solar light. J. Semicond., 2017, 38(11): 113004. doi: 10.1088/1674-4926/38/11/113004

[11]

Zhou Lei, Zhao Wenkuan, Fang Youling. Photocatalytic Activity of Anatase TiO2 Thin Films Prepared by Direct Deposition from Aqueous Solutions. J. Semicond., 2003, 24(S1): 94.

[12]

P. Satapathy, A. Pfuch, R. Grunwald, S. K. Das. Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si. J. Semicond., 2020, 41(3): 032303. doi: 10.1088/1674-4926/41/3/032303

[13]

Jing Xu, Yuelin Wei, Yunfang Huang, Jing Wang, A'xiang Chen, Leqing Fan, Jihuai Wu. Microwave-assisted synthesis of Mo-doped H1-xSr2Nb3-xMoxO10 (x=0, 0.05, 0.1, 0.15 and 0.2) with high photocatalytic activity. J. Semicond., 2014, 35(8): 083001. doi: 10.1088/1674-4926/35/8/083001

[14]

Shengli Wang, Kangda Yin, Xiang Li, Hongwei Yue, Yunling Liu. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics. J. Semicond., 2013, 34(8): 086003. doi: 10.1088/1674-4926/34/8/086003

[15]

Aochen Wang, Shengli Wang, Yuling Liu, Yan Li. Electrochemical investigation of copper chemical mechanical planarization in alkaline slurry without an inhibitor. J. Semicond., 2014, 35(2): 026003. doi: 10.1088/1674-4926/35/2/026003

[16]

Zhu Nianlin, Zhang Jin, Chen Ergang, Bai Han, Zhang Xi, Wang Guangcan, Guo Junmei, Dou Juying. Fabrication of Surface Nanostructures Using Scanning Electron Microscope. J. Semicond., 2006, 27(S1): 186.

[17]

M. A. Rafiq. Carrier transport mechanisms in semiconductor nanostructures and devices. J. Semicond., 2018, 39(6): 061002. doi: 10.1088/1674-4926/39/6/061002

[18]

M. Benhaliliba, A. Tiburcio-Silver, A. Avila-Garcia, A. Tavira, Y. S. Ocak, M. S. Aida, C. E. Benouis. The sprayed ZnO films: nanostructures and physical parameters. J. Semicond., 2015, 36(8): 083001. doi: 10.1088/1674-4926/36/8/083001

[19]

S. S. Dhasade, S. H. Han, V. J. Fulari. A nanostructured copper telluride thin film grown at room temperature by an electrodeposition method. J. Semicond., 2012, 33(9): 093002. doi: 10.1088/1674-4926/33/9/093002

[20]

Zhan Feng, Huang Shesong, Ni Haiqiao, Zhao Huan, Xiong Yonghua, Zhou Hongyu, Niu Zhichuan. GaAs Nanostructures Formed by Self-Assembled Droplet Epitaxy. J. Semicond., 2007, 28(S1): 141.

Search

Advanced Search >>

GET CITATION

Q F Fan, Q Lan, M L Zhang, X M Fan, Z W Zhou, C L Zhang. Preparation and photocatalytic activities of 3D flower-like CuO nanostructures[J]. J. Semicond., 2016, 37(8): 083002. doi: 10.1088/1674-4926/37/8/083002.

Export: BibTex EndNote

Article Metrics

Article views: 1000 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 05 January 2016 Manuscript revised: 26 January 2016 Online: Published: 01 August 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误