J. Semicond. > Volume 37 > Issue 8 > Article Number: 084005

Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure

Yaling Zhou , Xiaofeng Wang , , Yingchun Fu , Xiaodong Wang , and Fuhua Yang

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper mainly focuses on solving the low yield problem for lateral phase change random access memory with a fully confined phase change material node. Improper over-etching and bad step-coverage of physical vapor deposition were the main reasons for the poor contact quality, which leads to the low yield problem. Process improvement was carried out to better control over-etching within 10 nm. Atomic layer deposition process was used to replace physical vapor deposition to guarantee good step coverage. Contrasting cross-sectional photos taken by scanning electron microscopy showed great improvement in contact quality. The atom layer deposition process was demonstrated to have good prospects in nano-contact for phase change memory application.

Key words: low yieldover-etchingfully confinednanocontactphase change random access memory

Abstract: This paper mainly focuses on solving the low yield problem for lateral phase change random access memory with a fully confined phase change material node. Improper over-etching and bad step-coverage of physical vapor deposition were the main reasons for the poor contact quality, which leads to the low yield problem. Process improvement was carried out to better control over-etching within 10 nm. Atomic layer deposition process was used to replace physical vapor deposition to guarantee good step coverage. Contrasting cross-sectional photos taken by scanning electron microscopy showed great improvement in contact quality. The atom layer deposition process was demonstrated to have good prospects in nano-contact for phase change memory application.

Key words: low yieldover-etchingfully confinednanocontactphase change random access memory



References:

[1]

Ovshinsk S R. Reversible electrical switching phenomena in disordered structures[J]. Phys Rev Lett, 1968, 21(20): 1450. doi: 10.1103/PhysRevLett.21.1450

[2]

Lai S. Current status of the phase change memory and its future[J]. Electron Devices Meeting, 2003: 10.

[3]

Yu Bin, Ju Sanghyun, Sun Xuhui. Indium selenide nanowire phase-change memory[J]. Appl Phys Lett, 2007, 91(13): 133119. doi: 10.1063/1.2793505

[4]

Xiong F, Bae M H, Dai Y. Self-aligned nanotube-nanowire phase change memory[J]. Nano Lett, 2013, 13(2): 464. doi: 10.1021/nl3038097

[5]

Qi P, Javey A, Rolandi M. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes[J]. Journal of the American Chemical Society, 2004, 126(38): 11774. doi: 10.1021/ja045900k

[6]

Xiong F, Liao A D, Estrada D. Low-power switching of phase-change materials with carbon nanotube electrodes[J]. Science, 2011, 332(6029): 568. doi: 10.1126/science.1201938

[7]

Jung Y, Nam S, Agarwal R. High-resolution transmission electron microscopy study of electrically-driven reversible phase change in Ge2Sb2Te5 nanowires[J]. Nano Lett, 2011, 11(3): 1364. doi: 10.1021/nl104537c

[8]

Ahn J K, Park K W, Jung H J. Phase-change InSbTe nanowires grown in situ at low temperature by metal-organic chemical vapor deposition[J]. Nano Lett, 2010, 10(2): 472. doi: 10.1021/nl903188z

[9]

Yu Bin, Ju Sanghyun, Sun Xuhui. Indium selenide nanowire phase-change memory[J]. Appl Phys Lett, 2007, 91(13): 133119. doi: 10.1063/1.2793505

[10]

Xiong F, Bae M H, Dai Y, Liao A D. Self-aligned nanotube-nanowire phase change memory[J]. Nano Lett, 2013, 13(2): 464. doi: 10.1021/nl3038097

[11]

Fu Yingchun, Wang Xiaofeng, Ma Liuhong. High quality metal-quantum dot-metal structure fabricated with a highly compatible self-aligned process[J]. Journal of Semiconductors, 2015, 36(12): 123004. doi: 10.1088/1674-4926/36/12/123004

[12]

Yin Y, Miyachi A, Niida D. A novel lateral phase-change random access memory characterized by ultra low reset current and power consumption[J]. Jpn J Appl Phys, 2006, 45(7L): L726.

[13]

Merget F, Kim D H, Bolivar P H. Lateral phase change random access memory cell design for low power operation[J]. Microsystem Technologies, 2007, 13(2): 169.

[14]

Yin Y, Sone H, Hosaka S. Lateral SbTeN based multi-layer phase change memory for multi-state storage[J]. Microelectron Eng, 2007, 84(12): 2901. doi: 10.1016/j.mee.2007.03.004

[15]

Yin Y, Ota K, Higano N. Multilevel storage in lateral top-heater phase-change memory[J]. IEEE Electron Device Lett, 2008, 29(8): 876. doi: 10.1109/LED.2008.2000793

[16]

Yang H, Chong C T, Zhao R. GeTe/Sb7Te3 superlatticelike structure for lateral phase change memory[J]. Appl Phys Lett, 2009, 94(20): 203110. doi: 10.1063/1.3139776

[1]

Ovshinsk S R. Reversible electrical switching phenomena in disordered structures[J]. Phys Rev Lett, 1968, 21(20): 1450. doi: 10.1103/PhysRevLett.21.1450

[2]

Lai S. Current status of the phase change memory and its future[J]. Electron Devices Meeting, 2003: 10.

[3]

Yu Bin, Ju Sanghyun, Sun Xuhui. Indium selenide nanowire phase-change memory[J]. Appl Phys Lett, 2007, 91(13): 133119. doi: 10.1063/1.2793505

[4]

Xiong F, Bae M H, Dai Y. Self-aligned nanotube-nanowire phase change memory[J]. Nano Lett, 2013, 13(2): 464. doi: 10.1021/nl3038097

[5]

Qi P, Javey A, Rolandi M. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes[J]. Journal of the American Chemical Society, 2004, 126(38): 11774. doi: 10.1021/ja045900k

[6]

Xiong F, Liao A D, Estrada D. Low-power switching of phase-change materials with carbon nanotube electrodes[J]. Science, 2011, 332(6029): 568. doi: 10.1126/science.1201938

[7]

Jung Y, Nam S, Agarwal R. High-resolution transmission electron microscopy study of electrically-driven reversible phase change in Ge2Sb2Te5 nanowires[J]. Nano Lett, 2011, 11(3): 1364. doi: 10.1021/nl104537c

[8]

Ahn J K, Park K W, Jung H J. Phase-change InSbTe nanowires grown in situ at low temperature by metal-organic chemical vapor deposition[J]. Nano Lett, 2010, 10(2): 472. doi: 10.1021/nl903188z

[9]

Yu Bin, Ju Sanghyun, Sun Xuhui. Indium selenide nanowire phase-change memory[J]. Appl Phys Lett, 2007, 91(13): 133119. doi: 10.1063/1.2793505

[10]

Xiong F, Bae M H, Dai Y, Liao A D. Self-aligned nanotube-nanowire phase change memory[J]. Nano Lett, 2013, 13(2): 464. doi: 10.1021/nl3038097

[11]

Fu Yingchun, Wang Xiaofeng, Ma Liuhong. High quality metal-quantum dot-metal structure fabricated with a highly compatible self-aligned process[J]. Journal of Semiconductors, 2015, 36(12): 123004. doi: 10.1088/1674-4926/36/12/123004

[12]

Yin Y, Miyachi A, Niida D. A novel lateral phase-change random access memory characterized by ultra low reset current and power consumption[J]. Jpn J Appl Phys, 2006, 45(7L): L726.

[13]

Merget F, Kim D H, Bolivar P H. Lateral phase change random access memory cell design for low power operation[J]. Microsystem Technologies, 2007, 13(2): 169.

[14]

Yin Y, Sone H, Hosaka S. Lateral SbTeN based multi-layer phase change memory for multi-state storage[J]. Microelectron Eng, 2007, 84(12): 2901. doi: 10.1016/j.mee.2007.03.004

[15]

Yin Y, Ota K, Higano N. Multilevel storage in lateral top-heater phase-change memory[J]. IEEE Electron Device Lett, 2008, 29(8): 876. doi: 10.1109/LED.2008.2000793

[16]

Yang H, Chong C T, Zhao R. GeTe/Sb7Te3 superlatticelike structure for lateral phase change memory[J]. Appl Phys Lett, 2009, 94(20): 203110. doi: 10.1063/1.3139776

[1]

Yingchun Fu, Xiaofeng Wang, Liuhong Ma, Yaling Zhou, Xiang Yang, Xiaodong Wang, Fuhua Yang. High quality metal-quantum dot-metal structure fabricated with a highly compatible self-aligned process. J. Semicond., 2015, 36(12): 123004. doi: 10.1088/1674-4926/36/12/123004

[2]

Xiao Hong, Houpeng Chen, Zhitang Song, Daolin Cai, Xi Li. A low jitter PLL clock used for phase change memory. J. Semicond., 2013, 34(2): 025012. doi: 10.1088/1674-4926/34/2/025012

[3]

Zhao Yi, Wan Xinggong. Polysilicon Over-Etching Time Control of Advanced CMOS Processing with Emission Microscopy. J. Semicond., 2008, 29(1): 17.

[4]

Dongbin Zhu, Yi Li, Wensheng Shen, Zheng Zhou, Lifeng Liu, Xing Zhang. Resistive random access memory and its applications in storage and nonvolatile logic. J. Semicond., 2017, 38(7): 071002. doi: 10.1088/1674-4926/38/7/071002

[5]

Wang Pengjun, Mei Fengna. Design of ternary clocked adiabatic static random access memory. J. Semicond., 2011, 32(10): 105011. doi: 10.1088/1674-4926/32/10/105011

[6]

Juntao Li, Bo Liu, Zhitang Song, Dongning Yao, Gaoming Feng, Aodong He, Cheng Peng, Songlin Feng. Reactive ion etching of Si2Sb2Te5 in CF4/Ar plasma for a nonvolatile phase-change memory device. J. Semicond., 2013, 34(5): 056001. doi: 10.1088/1674-4926/34/5/056001

[7]

Ruru Huo, Daolin Cai, Bomy Chen, Yifeng Chen, Yuchan Wang, Yueqing Wang, Hongyang Wei, Qing Wang, Yangyang Xia, Dan Gao, Zhitang Song. Endurance characteristics of phase change memory cells. J. Semicond., 2016, 37(5): 054009. doi: 10.1088/1674-4926/37/5/054009

[8]

Li Xi, Song Zhitang, Cai Daolin, Chen Xiaogang, Chen Houpeng. An SPICE model for phase-change memory simulations. J. Semicond., 2011, 32(9): 094011. doi: 10.1088/1674-4926/32/9/094011

[9]

Gao Bo, Yu Xuefeng, Ren Diyuan, Li Yudong, Sun Jing, Cui Jiangwei, Wang Yiyuan, Li Ming. Total dose ionizing irradiation effects on a static random access memory field programmable gate array. J. Semicond., 2012, 33(3): 034007. doi: 10.1088/1674-4926/33/3/034007

[10]

Yanjun Yang, Yun Zeng. A fully integrated CMOS VCXO-IC with low phase noise, wide tuning range and high tuning linearity. J. Semicond., 2015, 36(6): 065009. doi: 10.1088/1674-4926/36/6/065009

[11]

Zhang Xu, Rao Feng, Liu Bo, Peng Cheng, Zhou Xilin, Yao Dongning, Guo Xiaohui, Song Sanniang, Wang Liangyong, Cheng Yan, Wu Liangcai, Song Zhitang, Feng Songlin. Dry etching of new phase-change material Al1.3Sb3Te in CF4/Ar plasma. J. Semicond., 2012, 33(10): 102003. doi: 10.1088/1674-4926/33/10/102003

[12]

Joshua M. Kundu, Patrick M. Karimi, Walter K. Njoroge. Crystallization kinetics of Sn40Se60 thin films for phase change memory applications. J. Semicond., 2015, 36(6): 063002. doi: 10.1088/1674-4926/36/6/063002

[13]

Wei Yiqun, Lin Xinnan, Jia Yuchao, Cui Xiaole, He Jin, Zhang Xing. A SPICE model for a phase-change memory cell based on the analytical conductivity model. J. Semicond., 2012, 33(11): 114004. doi: 10.1088/1674-4926/33/11/114004

[14]

Wei Yiqun, Lin Xinnan, Jia Yuchao, Cui Xiaole, Zhang Xing, Song Zhitang. Contact size scaling of a W-contact phase-change memory cell based on numerical simulation. J. Semicond., 2012, 33(10): 104006. doi: 10.1088/1674-4926/33/10/104006

[15]

Xia Lingli, Li Weinan, Zheng Yongzheng, Huang Yumei, Hong Zhiliang. A Fully Integrated Low Power Transmitter in an 802.11bTransceiver System. J. Semicond., 2008, 29(9): 1753.

[16]

Yaoyao Lu, Daolin Cai, Yifeng Chen, Shuai Yan, Lei Wu, Yuanguang Liu, Yang Li, Zhitang Song. Improving the data retention of phase change memory by using a doping element in selected Ge2Sb2Te5. J. Semicond., 2019, 40(4): 042402. doi: 10.1088/1674-4926/40/4/042402

[17]

Mao Cui, He Lenian, Yan Xiaolang. A Novel Fully On-Chip CMOS Low-Dropout Linear Regulator with Ultra Low Noise. J. Semicond., 2008, 29(8): 1602.

[18]

Wang Shaohua, Yu Guangming, Liu Yongpan, Yang Huazhong. A Low Noise,Low Power Fully Digitally Controlled LC Oscillator for PHS Transceivers. J. Semicond., 2007, 28(11): 1836.

[19]

Yao Fei, Cheng Buwen, Xue Chunlai, Wang Qiming. Over Wet-Etching Self-Aligned Ion Implantation Doping Technology on Fabricating SiGe/Si HBT. J. Semicond., 2005, 26(S1): 117.

[20]

Han Wang, Chao Gou, Kai Luo. A fully on-chip fast-transient NMOS low dropout voltage regulator with quasi floating gate pass element. J. Semicond., 2017, 38(4): 045002. doi: 10.1088/1674-4926/38/4/045002

Search

Advanced Search >>

GET CITATION

Y L Zhou, X F Wang, Y C Fu, X D Wang, F H Yang. Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure[J]. J. Semicond., 2016, 37(8): 084005. doi: 10.1088/1674-4926/37/8/084005.

Export: BibTex EndNote

Article Metrics

Article views: 1675 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 03 January 2016 Manuscript revised: 21 March 2016 Online: Published: 01 August 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误