J. Semicond. > Volume 37 > Issue 8 > Article Number: 084007

Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode

Yi Pang , , Xiang Li and Baiqin Zhao

+ Author Affilications + Find other works by these authors

PDF

Abstract: The paper mainly deals with theoretical investigations of the effect of the thickness change of the waveguide layers on the threshold current. It is analyzed according to the result of a numerical simulation that asks how does the shift of the active region position affect the threshold current for a single quantum well (SQW) and double quantum well (DQW) laser diode (LD) with a relatively narrow waveguide. It is found that the variation trend of threshold current and optimum position of QW are different in SQW and DQW LD with 0.2 μm-thick waveguide, which may be due to the higher variation rate of optical loss in DQW LD with the shift of the active region. It is also found that in terms of either SQW or DQW LD, the variation tendency of the threshold current with a different loss coefficient of the p-cladding layer makes little difference for the relatively narrow waveguide LD. Moreover, the variation trend of the threshold current and the optimum position of QW is almost the same in SQW and DQW LD with 0.8μm-thick waveguide, because the optical loss is small enough and the threshold current is dominated by the optical confinement factor (OCF) in QW.

Key words: semiconductorlaser diodethreshold currentsimulation

Abstract: The paper mainly deals with theoretical investigations of the effect of the thickness change of the waveguide layers on the threshold current. It is analyzed according to the result of a numerical simulation that asks how does the shift of the active region position affect the threshold current for a single quantum well (SQW) and double quantum well (DQW) laser diode (LD) with a relatively narrow waveguide. It is found that the variation trend of threshold current and optimum position of QW are different in SQW and DQW LD with 0.2 μm-thick waveguide, which may be due to the higher variation rate of optical loss in DQW LD with the shift of the active region. It is also found that in terms of either SQW or DQW LD, the variation tendency of the threshold current with a different loss coefficient of the p-cladding layer makes little difference for the relatively narrow waveguide LD. Moreover, the variation trend of the threshold current and the optimum position of QW is almost the same in SQW and DQW LD with 0.8μm-thick waveguide, because the optical loss is small enough and the threshold current is dominated by the optical confinement factor (OCF) in QW.

Key words: semiconductorlaser diodethreshold currentsimulation



References:

[1]

Zhu Zhen, Zhang Xin, Li Peixu. Voltage reduction of 808 nm GaAsP/(Al)GaInP laser diodes with GaInAsP intermediate layer[J]. Journal of Semiconductors, 2015, 36(1): 014011. doi: 10.1088/1674-4926/36/1/014011

[2]

Li Xiang, Zhao Degang, Jiang Desheng. Fabrication of ridge waveguide of 808 nm GaAs-based laser diodes by wet chemical etching[J]. Journal of Semiconductors, 2015, 36(7): 074009. doi: 10.1088/1674-4926/36/7/074009

[3]

Wang Yong, Liu Dandan, Feng Guoqing. Preparation for Bragg grating of 808 nm distributed feedback laser diode[J]. Journal of Semiconductors, 2015, 36(5): 054008. doi: 10.1088/1674-4926/36/5/054008

[4]

Li X, Zhao D G, Jiang D S. A modified structure with asymmetric and doping barrier interlayers of GaAs-based laser diodes with both small vertical divergence angle and low threshold current[J]. Superlattices and Microstructures, 2015, 80: 111. doi: 10.1016/j.spmi.2015.01.006

[5]

Gilor J, Samid I, Fekete D. Threshold current density reduction of strained AlInGaAs quantum-well laser[J]. IEEE J Quantum Electron, 2004, 40(10): 1355. doi: 10.1109/JQE.2004.834561

[6]

Wang Huolei, Yu Hongyan, Zhou Xuliang. High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission[J]. Appl Phys Lett, 2014, 105(14): 141101. doi: 10.1063/1.4897436

[7]

Lee J J, Mawst L J, Botez D. Asymmetric broad waveguide diode lasers (λ=980 nm) of large equivalent transverse spot size and low temperature sensitivity[J]. Photonics Technol Lett, 2002, 14(8): 1046. doi: 10.1109/LPT.2002.1021964

[8]

Wenzel H. Basic aspects of high-power semiconductor laser simulation[J]. IEEE J Sel Topics Quantum Electron, 2013, 19(5): 1.

[9]

Zhukov A E, Asryan L V, Semenova E S. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates[J]. Semiconductors, 2015, 49(7): 935. doi: 10.1134/S1063782615070258

[10]

Fan D S, Grant P C, Yu S Q. MBE grown GaAsBi/GaAs double quantum well separate confinement heterostructures[J]. J Vac Sci Technol B, 2013, 31(3): 03C105.

[11]

Alvi P A, Lal P, Yadav R. Modal gain characteristics of GRIN-InGaAlAs/InP lasing nano-heterostructures[J]. Supetlattice Microst, 2013, 61: 1. doi: 10.1016/j.spmi.2013.05.019

[12]

www.crosslight.com for LASTIP by Crosslight Software Inc

[13]

Nawaz M, Permthamassin K, Zaring C. A theoretical optimization of GaInP/GaInAs/GaAs based 980 nm Al-free pump laser using self-consistent numerical simulation[J]. Solid-State Electron, 2001, 47(2): 289.

[14]

Yen Shenghorng, Chen Meiling, Kuo Yenkuang. Gain and threshold properties of InGaAsN/GaAsN material system for 1.3-μm semiconductor lasers[J]. Optics & Laser Technol, 2007, 39(7): 1432.

[15]

Kopf R F, Herman M H, Schnoes M L. Band offset determination in analog graded parabolic and triangular quantum wells of GaAs/AlGaAs and GaInAs/AlInAs[J]. J Appl Phys, 1992, 71(10): 5004. doi: 10.1063/1.350600

[16]

Gokhale M R, Dries J C, Studenkov P V. High-power high-efficiency 0.98-μm wavelength InGaAs-(In)GaAs(P)-InGaP broaded waveguide lasers grown by gas-source molecular beam epitaxy[J]. IEEE J Quantum Electron, 1997, 33(12): 2266. doi: 10.1109/3.644109

[17]

Slipchenko S O, Vinokurov D A, Pikhtin N A. Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures[J]. Semiconductors, 2004, 38(12): 1430. doi: 10.1134/1.1836066

[18]

Ryvkin B S, Avrutin E A. Asymmetric, nonbroadened large optical cavity waveguide structures for high-power long-wavelength semiconductor lasers[J]. J Appl Phys, 2005, 97(12): 123103. doi: 10.1063/1.1928309

[19]

Ryvkin B S, Avrutin E A. Improvement of differential quantum efficiency and power output by waveguide asymmetry in separate-confinement-structure diode lasers[J]. IEEE Proc Optoelectron, 2004, 151(4): 232. doi: 10.1049/ip-opt:20040633

[1]

Zhu Zhen, Zhang Xin, Li Peixu. Voltage reduction of 808 nm GaAsP/(Al)GaInP laser diodes with GaInAsP intermediate layer[J]. Journal of Semiconductors, 2015, 36(1): 014011. doi: 10.1088/1674-4926/36/1/014011

[2]

Li Xiang, Zhao Degang, Jiang Desheng. Fabrication of ridge waveguide of 808 nm GaAs-based laser diodes by wet chemical etching[J]. Journal of Semiconductors, 2015, 36(7): 074009. doi: 10.1088/1674-4926/36/7/074009

[3]

Wang Yong, Liu Dandan, Feng Guoqing. Preparation for Bragg grating of 808 nm distributed feedback laser diode[J]. Journal of Semiconductors, 2015, 36(5): 054008. doi: 10.1088/1674-4926/36/5/054008

[4]

Li X, Zhao D G, Jiang D S. A modified structure with asymmetric and doping barrier interlayers of GaAs-based laser diodes with both small vertical divergence angle and low threshold current[J]. Superlattices and Microstructures, 2015, 80: 111. doi: 10.1016/j.spmi.2015.01.006

[5]

Gilor J, Samid I, Fekete D. Threshold current density reduction of strained AlInGaAs quantum-well laser[J]. IEEE J Quantum Electron, 2004, 40(10): 1355. doi: 10.1109/JQE.2004.834561

[6]

Wang Huolei, Yu Hongyan, Zhou Xuliang. High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission[J]. Appl Phys Lett, 2014, 105(14): 141101. doi: 10.1063/1.4897436

[7]

Lee J J, Mawst L J, Botez D. Asymmetric broad waveguide diode lasers (λ=980 nm) of large equivalent transverse spot size and low temperature sensitivity[J]. Photonics Technol Lett, 2002, 14(8): 1046. doi: 10.1109/LPT.2002.1021964

[8]

Wenzel H. Basic aspects of high-power semiconductor laser simulation[J]. IEEE J Sel Topics Quantum Electron, 2013, 19(5): 1.

[9]

Zhukov A E, Asryan L V, Semenova E S. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates[J]. Semiconductors, 2015, 49(7): 935. doi: 10.1134/S1063782615070258

[10]

Fan D S, Grant P C, Yu S Q. MBE grown GaAsBi/GaAs double quantum well separate confinement heterostructures[J]. J Vac Sci Technol B, 2013, 31(3): 03C105.

[11]

Alvi P A, Lal P, Yadav R. Modal gain characteristics of GRIN-InGaAlAs/InP lasing nano-heterostructures[J]. Supetlattice Microst, 2013, 61: 1. doi: 10.1016/j.spmi.2013.05.019

[12]

www.crosslight.com for LASTIP by Crosslight Software Inc

[13]

Nawaz M, Permthamassin K, Zaring C. A theoretical optimization of GaInP/GaInAs/GaAs based 980 nm Al-free pump laser using self-consistent numerical simulation[J]. Solid-State Electron, 2001, 47(2): 289.

[14]

Yen Shenghorng, Chen Meiling, Kuo Yenkuang. Gain and threshold properties of InGaAsN/GaAsN material system for 1.3-μm semiconductor lasers[J]. Optics & Laser Technol, 2007, 39(7): 1432.

[15]

Kopf R F, Herman M H, Schnoes M L. Band offset determination in analog graded parabolic and triangular quantum wells of GaAs/AlGaAs and GaInAs/AlInAs[J]. J Appl Phys, 1992, 71(10): 5004. doi: 10.1063/1.350600

[16]

Gokhale M R, Dries J C, Studenkov P V. High-power high-efficiency 0.98-μm wavelength InGaAs-(In)GaAs(P)-InGaP broaded waveguide lasers grown by gas-source molecular beam epitaxy[J]. IEEE J Quantum Electron, 1997, 33(12): 2266. doi: 10.1109/3.644109

[17]

Slipchenko S O, Vinokurov D A, Pikhtin N A. Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures[J]. Semiconductors, 2004, 38(12): 1430. doi: 10.1134/1.1836066

[18]

Ryvkin B S, Avrutin E A. Asymmetric, nonbroadened large optical cavity waveguide structures for high-power long-wavelength semiconductor lasers[J]. J Appl Phys, 2005, 97(12): 123103. doi: 10.1063/1.1928309

[19]

Ryvkin B S, Avrutin E A. Improvement of differential quantum efficiency and power output by waveguide asymmetry in separate-confinement-structure diode lasers[J]. IEEE Proc Optoelectron, 2004, 151(4): 232. doi: 10.1049/ip-opt:20040633

[1]

Yu'an Liu, Wenlang Lou. Correlation between dark current RTS noise and defects for AlGaInP multiple-quantum-well laser diode. J. Semicond., 2014, 35(2): 024009. doi: 10.1088/1674-4926/35/2/024009

[2]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[3]

Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002

[4]

Wang Yuxia, Liu Chunling, Lu Peng, Wang Yong, Qu Yi, Liu Guojun. 1.3μm AlInGaAs Strained Single Quantum Well Laser Diodes with High Characteristic Temperature of 200K. J. Semicond., 2007, 28(12): 1912.

[5]

Li Deyao, Huang Yongzhen, Zhang Shuming, Chong Ming, Ye Xiaojun, Zhu Jianjun, Zhao Degang, Chen Lianghui, Yang Hui, Liang Junwu. Temperature Distribution in Ridge Structure InGaN Laser Diodes and Its Influence on Device Characteristics. J. Semicond., 2006, 27(3): 499.

[6]

Degang Zhao, Jing Yang, Zongshun Liu, Ping Chen, Jianjun Zhu, Desheng Jiang, Yongsheng Shi, Hai Wang, Lihong Duan, Liqun Zhang, Hui Yang. Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes. J. Semicond., 2017, 38(5): 051001. doi: 10.1088/1674-4926/38/5/051001

[7]

Yunfei Qi, Pengfei Zhao, Yulong Wu, Yongqi Chen, Yonggang Zou. Design of 20 W fiber-coupled green laser diode by Zemax. J. Semicond., 2017, 38(9): 096002. doi: 10.1088/1674-4926/38/9/096002

[8]

Wei Qiyuan, Li Ti, Wang Yanjie, Chen Weihua, Li Rui, Pan Yaobo, Xu Ke, Zhang Bei, Yang Zhijian, Hu Xiaodon. Characteristics and Structural Optimization of Multi-Quantum-Well Structure of GaN-Based Laser Diode. J. Semicond., 2007, 28(S1): 471.

[9]

Liu Suping, Zhong Li, Zhang Haiyan, Wang Cuiluan, Feng Xiaoming, Ma Xiaoyu. 259W QCW Al-Free 808nm Linear Laser Diode Arrays. J. Semicond., 2008, 29(12): 2335.

[10]

Niu Zhichuan, Ni Haiqiao, Fang Zhidan, Gong Zheng, Zhang Shiyong, Wu Donghai, Sun Zheng, Zhao Huan, Peng Hongling, Han Qin, Wu Ronghan. 1.3μm InGaAs/InAs/GaAs Self-Assembled Quantum Dot Laser Diode Grown by Molecular Beam Epitaxy. J. Semicond., 2006, 27(3): 482.

[11]

Li Jingbo, Wang Linwang, Wei Suhuai. Electronic Structure of Semiconductor Nanocrystals. J. Semicond., 2006, 27(2): 191.

[12]

Ken K. Chin. Local charge neutrality condition, Fermi level and majority carrier density of a semiconductor with multiple localized multi-level intrinsic/impurity defects. J. Semicond., 2011, 32(11): 112001. doi: 10.1088/1674-4926/32/11/112001

[13]

Liu Xueqiang, Zhang Tong, Wang Lijie, Xia Zhiqiang, Li Mingyou, Liu Shiyong. A Testing Method on a Thin Film Transistor Array for Active Matrix Organic Emitting Diode. J. Semicond., 2007, 28(7): 1161.

[14]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[15]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[16]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[17]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[18]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[19]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[20]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

Search

Advanced Search >>

GET CITATION

Y Pang, X Li, B Q Zhao. Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode[J]. J. Semicond., 2016, 37(8): 084007. doi: 10.1088/1674-4926/37/8/084007.

Export: BibTex EndNote

Article Metrics

Article views: 787 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 05 January 2016 Manuscript revised: 29 February 2016 Online: Published: 01 August 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误