J. Semicond. > Volume 38 > Issue 1 > Article Number: 014006

Large area perovskite solar cell module

Longhua Cai , Lusheng Liang , Jifeng Wu , Bin Ding , Lili Gao and Bin Fan ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The recent dramatic rise in power conversion efficiencies (PCE) of perovskite solar cells has triggered intense research worldwide. However, their practical development is hampered by poor stability and low PCE values with large areas devices. Here, we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film, even for 5×5 cm2 modules, the PCE reached 10.6% and no significant degradation was found after 140 days of outdoor testing. Our approach enables the realization of high performance large-area PSCs for practical application.

Key words: perovskite solar cellsgas pumpingslot-die coaterlarge areas devices

Abstract: The recent dramatic rise in power conversion efficiencies (PCE) of perovskite solar cells has triggered intense research worldwide. However, their practical development is hampered by poor stability and low PCE values with large areas devices. Here, we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film, even for 5×5 cm2 modules, the PCE reached 10.6% and no significant degradation was found after 140 days of outdoor testing. Our approach enables the realization of high performance large-area PSCs for practical application.

Key words: perovskite solar cellsgas pumpingslot-die coaterlarge areas devices



References:

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[2]

Best research-cell efficiencies NREL (2016). www.nrel.gov/ncpv/images/efficiency_chart.jpg

[3]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[4]

Burschka J, Pellet N, Moon S. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316. doi: 10.1038/nature12340

[5]

Mei A Y, Li X, Liu L F. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295. doi: 10.1126/science.1254763

[6]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234. doi: 10.1126/science.aaa9272

[7]

Ding B, Gao L L, Liang L S. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method[J]. ACS Appl Mater Interfaces, 2016, 8(31): 20067. doi: 10.1021/acsami.6b05862

[8]

Gao L L, Liang L S, Song X X. Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate[J]. J Mater Chem A, 2016, 4(10): 3704. doi: 10.1039/C6TA00230G

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[2]

Best research-cell efficiencies NREL (2016). www.nrel.gov/ncpv/images/efficiency_chart.jpg

[3]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[4]

Burschka J, Pellet N, Moon S. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316. doi: 10.1038/nature12340

[5]

Mei A Y, Li X, Liu L F. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295. doi: 10.1126/science.1254763

[6]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234. doi: 10.1126/science.aaa9272

[7]

Ding B, Gao L L, Liang L S. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method[J]. ACS Appl Mater Interfaces, 2016, 8(31): 20067. doi: 10.1021/acsami.6b05862

[8]

Gao L L, Liang L S, Song X X. Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate[J]. J Mater Chem A, 2016, 4(10): 3704. doi: 10.1039/C6TA00230G

[1]

Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong. Applications of cesium in the perovskite solar cells. J. Semicond., 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003

[2]

Dan Han, Chenmin Dai, Shiyou Chen. Calculation studies on point defects in perovskite solar cells. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006

[3]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[4]

Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002

[5]

Yamei Wu, Ruixia Yang, Hanmin Tian, Shuai Chen. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction. J. Semicond., 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[6]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[7]

Jingbi You. Preface to the Special Topic on Perovskite Solar Cells. J. Semicond., 2017, 38(1): 011001. doi: 10.1088/1674-4926/38/1/011001

[8]

Yang (Michael) Yang. Surface passivation of perovskite film for efficient solar cells. J. Semicond., 2019, 40(4): 040204. doi: 10.1088/1674-4926/40/4/040204

[9]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[10]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[11]

Yongming Zhao, Jianrong Dong, Kuilong Li, Yurun Sun, Xulu Zeng, Yang He, Shuzhen Yu, Hui Yang. InGaAsP/InGaAs tandem photovoltaic devices for four-junction solar cells. J. Semicond., 2015, 36(4): 044011. doi: 10.1088/1674-4926/36/4/044011

[12]

Lin Fan, Fengyou Wang, Junhui Liang, Xin Yao, Jia Fang, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact. J. Semicond., 2017, 38(1): 014003. doi: 10.1088/1674-4926/38/1/014003

[13]

Tianyue Wang, Jiewei Chen, Gaoxiang Wu, Dandan Song, Meicheng Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005

[14]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[15]

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, Xingwang Zhang, Jingbi You. Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping. J. Semicond., 2019, 40(10): 000000.

[16]

Jincheng Zhang, Chengwu Shi, Junjun Chen, Chao Ying, Ni Wu, Mao Wang. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J. Semicond., 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002

[17]

Nanjie Guo, Taiyang Zhang, Ge Li, Feng Xu, Xufang Qian, Yixin Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. J. Semicond., 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004

[18]

Zhu Peng, Pan Liyang, Gu Haiming, Qiao Fengying, Deng Ning, Xu Jun. A novel modified charge pumping method for trapped charge characterization in nanometer-scale devices. J. Semicond., 2010, 31(10): 104008. doi: 10.1088/1674-4926/31/10/104008

[19]

Xiaoyan Dai, Chengwu Shi, Yanru Zhang, Ni Wu. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells. J. Semicond., 2015, 36(7): 074003. doi: 10.1088/1674-4926/36/7/074003

[20]

Liu Wen, Li Yueqiang, Chen Jianjun, Chen Yanling, Wang Xiaodong, Yang Fuhua. Optimization of grid design for solar cells. J. Semicond., 2010, 31(1): 014006. doi: 10.1088/1674-4926/31/1/014006

Search

Advanced Search >>

GET CITATION

L H Cai, L S Liang, J F Wu, B Ding, L L Gao, B Fan. Large area perovskite solar cell module[J]. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006.

Export: BibTex EndNote

Article Metrics

Article views: 1521 Times PDF downloads: 46 Times Cited by: 0 Times

History

Manuscript received: 23 August 2016 Manuscript revised: 06 December 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误