J. Semicond. > Volume 38 > Issue 10 > Article Number: 105010

Equivalent radiation source of 3D package for electromagnetic characteristics analysis

Jun Li , Xingchang Wei , and Yufei Shu

+ Author Affiliations + Find other works by these authors

PDF

Abstract: An equivalent radiation source method is proposed to characterize electromagnetic emission and interference of complex three dimensional integrated circuits (IC) in this paper. The method utilizes amplitude-only near-field scanning data to reconstruct an equivalent magnetic dipole array, and the differential evolution optimization algorithm is proposed to extract the locations, orientation and moments of those dipoles. By importing the equivalent dipoles model into a 3D full-wave simulator together with the victim circuit model, the electromagnetic interference issues in mixed RF/digital systems can be well predicted. A commercial IC is used to validate the accuracy and efficiency of this proposed method. The coupled power at the victim antenna port calculated by the equivalent radiation source is compared with the measured data. Good consistency is obtained which confirms the validity and efficiency of the method.

Key words: equivalent radiation sourcethree dimensional integrated circuitsamplitude-onlymagnetic dipole arraydifferential evolution

Abstract: An equivalent radiation source method is proposed to characterize electromagnetic emission and interference of complex three dimensional integrated circuits (IC) in this paper. The method utilizes amplitude-only near-field scanning data to reconstruct an equivalent magnetic dipole array, and the differential evolution optimization algorithm is proposed to extract the locations, orientation and moments of those dipoles. By importing the equivalent dipoles model into a 3D full-wave simulator together with the victim circuit model, the electromagnetic interference issues in mixed RF/digital systems can be well predicted. A commercial IC is used to validate the accuracy and efficiency of this proposed method. The coupled power at the victim antenna port calculated by the equivalent radiation source is compared with the measured data. Good consistency is obtained which confirms the validity and efficiency of the method.

Key words: equivalent radiation sourcethree dimensional integrated circuitsamplitude-onlymagnetic dipole arraydifferential evolution



References:

[1]

Fang R N, Sun X, Miao M. Novel through-silicon vias for enhanced signal integrity in 3D integrated systems[J]. J Semicond, 2016, 37(10): 106002. doi: 10.1088/1674-4926/37/10/106002

[2]

Ren X L, Pang C, Qin Z. Design, analysis and test of highfrequency interconnections in 2.5D package with silicon interposer[J]. J Semicond, 2016, 37(4): 045003. doi: 10.1088/1674-4926/37/4/045003

[3]

Yao Q, Ye Z C, Yu W J. An efficient method for comprehensive modeling and parasitic extraction of cylindrical through-silicon vias in 3D ICs[J]. J Semicond, 2015, 36(8): 085006. doi: 10.1088/1674-4926/36/8/085006

[4]

Yolanda V G, Christian A, Anne L. Modeling magnetic radiations of electronic circuits using near-field scanning method[J]. IEEE Trans Electromagn Compatib, 2007, 49(2): 391. doi: 10.1109/TEMC.2006.890168

[5]

Iserniaa T, Leoneb G, Pierric R. Phaseless near field techniques:formulation of the problem and field properties[J]. J Electromagn Waves Appl, 1994, 8(7): 871.

[6]

Lopez P F, Ramanujan A, Gilabert Y V. A radiated emission model compatible to a commercial electromagnetic simulation tool[J]. 20th International Zurich Symposium on Electromagnetic Compatibility, 2009: 369.

[7]

Pan J N, Li G H, Zhou Y. Measurement validation of the dipole-moment model for IC radiated emissions[J]. IEEE International Symposium on Electromagnetic Compatibility (EMC), 2013: 666.

[8]

Weng H X, Beetner D G, DuBroff R E. Prediction of radiated emissions using near-field measurements[J]. IEEE Trans Electromagn Compatib, 2011, 53(4): 891. doi: 10.1109/TEMC.2011.2141998

[9]

Yu Z W, Mix J A, Sajuyigbe S. An improved dipole-moment model based on near-field scanning for characterizing near-field coupling and far-field radiation from an IC[J]. IEEE Trans Electromagn Compatib, 2013, 55(1): 97. doi: 10.1109/TEMC.2012.2207726

[10]

Pan J N, Li L, Gao X. Application of dipole-moment model in EMI estimation[J]. Joint IEEE International Symposium on Electromagnetic Compatibility (EMC) and EMC Europe, 2015: 350.

[11]

Xiang F P, Li E P, Wei X C. A particle swarm optimizationbased approach for predicting maximum radiated emission from PCBs with dominant radiators[J]. IEEE Trans Electromagn Compatib, 2015, 57(5): 1197. doi: 10.1109/TEMC.2015.2414174

[12]

Regue J R, Ribo M, Garrell J M. A genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization[J]. IEEE Trans Electromagn Compatib, 2001, 43(4): 520. doi: 10.1109/15.974631

[13]

Xing T, Thomas D W P, Nothofer A. A genetic algorithm based method for modeling equivalent emission sources of printed circuits from near-field measurements[J]. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010: 293.

[14]

Constantine A. Balanis. Antenna theory: analysis and design. America: John Wiley & Sons, 2012

[15]

Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. J Glob Optim, 1997: 341.

[16]

International Electrotechnical Commission. Integrated circuitsmeasurement of electromagnetic emissions, 150 kHz to 1 GHz-Part 3: measurement of radiated emissions, surface scan method, IEC 61967-3, 2005

[1]

Fang R N, Sun X, Miao M. Novel through-silicon vias for enhanced signal integrity in 3D integrated systems[J]. J Semicond, 2016, 37(10): 106002. doi: 10.1088/1674-4926/37/10/106002

[2]

Ren X L, Pang C, Qin Z. Design, analysis and test of highfrequency interconnections in 2.5D package with silicon interposer[J]. J Semicond, 2016, 37(4): 045003. doi: 10.1088/1674-4926/37/4/045003

[3]

Yao Q, Ye Z C, Yu W J. An efficient method for comprehensive modeling and parasitic extraction of cylindrical through-silicon vias in 3D ICs[J]. J Semicond, 2015, 36(8): 085006. doi: 10.1088/1674-4926/36/8/085006

[4]

Yolanda V G, Christian A, Anne L. Modeling magnetic radiations of electronic circuits using near-field scanning method[J]. IEEE Trans Electromagn Compatib, 2007, 49(2): 391. doi: 10.1109/TEMC.2006.890168

[5]

Iserniaa T, Leoneb G, Pierric R. Phaseless near field techniques:formulation of the problem and field properties[J]. J Electromagn Waves Appl, 1994, 8(7): 871.

[6]

Lopez P F, Ramanujan A, Gilabert Y V. A radiated emission model compatible to a commercial electromagnetic simulation tool[J]. 20th International Zurich Symposium on Electromagnetic Compatibility, 2009: 369.

[7]

Pan J N, Li G H, Zhou Y. Measurement validation of the dipole-moment model for IC radiated emissions[J]. IEEE International Symposium on Electromagnetic Compatibility (EMC), 2013: 666.

[8]

Weng H X, Beetner D G, DuBroff R E. Prediction of radiated emissions using near-field measurements[J]. IEEE Trans Electromagn Compatib, 2011, 53(4): 891. doi: 10.1109/TEMC.2011.2141998

[9]

Yu Z W, Mix J A, Sajuyigbe S. An improved dipole-moment model based on near-field scanning for characterizing near-field coupling and far-field radiation from an IC[J]. IEEE Trans Electromagn Compatib, 2013, 55(1): 97. doi: 10.1109/TEMC.2012.2207726

[10]

Pan J N, Li L, Gao X. Application of dipole-moment model in EMI estimation[J]. Joint IEEE International Symposium on Electromagnetic Compatibility (EMC) and EMC Europe, 2015: 350.

[11]

Xiang F P, Li E P, Wei X C. A particle swarm optimizationbased approach for predicting maximum radiated emission from PCBs with dominant radiators[J]. IEEE Trans Electromagn Compatib, 2015, 57(5): 1197. doi: 10.1109/TEMC.2015.2414174

[12]

Regue J R, Ribo M, Garrell J M. A genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization[J]. IEEE Trans Electromagn Compatib, 2001, 43(4): 520. doi: 10.1109/15.974631

[13]

Xing T, Thomas D W P, Nothofer A. A genetic algorithm based method for modeling equivalent emission sources of printed circuits from near-field measurements[J]. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010: 293.

[14]

Constantine A. Balanis. Antenna theory: analysis and design. America: John Wiley & Sons, 2012

[15]

Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. J Glob Optim, 1997: 341.

[16]

International Electrotechnical Commission. Integrated circuitsmeasurement of electromagnetic emissions, 150 kHz to 1 GHz-Part 3: measurement of radiated emissions, surface scan method, IEC 61967-3, 2005

[1]

Hu Huiyong, Zhang Heming, Jia Xinzhang, Dai Xianying, Xuan Rongxi. Study on Si-SiGe Three-Dimensional CMOS Integrated Circuits. J. Semicond., 2007, 28(5): 681.

[2]

Yingbo Zhao, Gang Dong, Yintang Yang. Analysis and optimization of TSV-TSV coupling in three-dimensional integrated circuits. J. Semicond., 2015, 36(4): 045011. doi: 10.1088/1674-4926/36/4/045011

[3]

Lu Lei, Zhou Feng, Tang Zhangwen, Min Hao, Wang Junyu. Equivalent Model and Parameter Extraction of Center-Tapped Differential Inductors. J. Semicond., 2006, 27(12): 2150.

[4]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[5]

A. Tonk, N. Afzal. Second generation fully differential current conveyor based analog circuits. J. Semicond., 2019, 40(4): 042401. doi: 10.1088/1674-4926/40/4/042401

[6]

Xiaoxian Liu, Zhangming Zhu, Yintang Yang, Fengjuan Wang, Ruixue Ding. Impedance matching for the reduction of signal reflection in high speed multilevel three-dimensional integrated chips. J. Semicond., 2014, 35(1): 015008. doi: 10.1088/1674-4926/35/1/015008

[7]

Wenliang Zhang, Yangjun Zhu, Shuojin Lu, Xiaoli Tian. The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model. J. Semicond., 2014, 35(2): 024008. doi: 10.1088/1674-4926/35/2/024008

[8]

Yu Changliang, Mao Luhong, Xiao Xindong, Xie Sheng, Zhang Shilin. A monolithic, standard CMOS, fully differential optical receiver with an integrated MSM photodetector. J. Semicond., 2009, 30(10): 105010. doi: 10.1088/1674-4926/30/10/105010

[9]

Xiaodong Xu, Haigang Yang, Tongqiang Gao, Hongfeng Zhang. A fully integrated 3.5 GHz CMOS differential power amplifier driver. J. Semicond., 2013, 34(7): 075006. doi: 10.1088/1674-4926/34/7/075006

[10]

Zhiguang Ao, Jinhai Sun, He Cai, Guofeng Song, Jiakun Song, Yuzhi Song, Yun Xu. Nanoplasmonic-gold-cylinder-array-enhanced terahertz source. J. Semicond., 2016, 37(12): 123002. doi: 10.1088/1674-4926/37/12/123002

[11]

Xia Lingli, Huang Yumei, Hong Zhiliang. A fully integrated BPSK amplitude and spectrum tunable transmitter for IR-UWB system. J. Semicond., 2009, 30(1): 015006. doi: 10.1088/1674-4926/30/1/015006

[12]

Wang Chunhua, Ma Minglin, Sun Jingru, Du Sichun, Guo Xiaorong, He Haizhen. A differential low-voltage high gain current-mode integrated RF receiver front-end. J. Semicond., 2011, 32(2): 025009. doi: 10.1088/1674-4926/32/2/025009

[13]

Najam Muhammad Amin, Zhigong Wang, Zhiqun Li. An I/Q mixer with an integrated differential quadrature all-pass filter for on-chip quadrature LO signal generation. J. Semicond., 2015, 36(5): 055001. doi: 10.1088/1674-4926/36/5/055001

[14]

Yun Gui, Xu Zhang, Yuan Wang, Ming Liu, Weihua Pei, Kai Liang, Suibiao Huang, Bin Li, Hongda Chen. A multi-channel fully differential programmable integrated circuit for neural recording application. J. Semicond., 2013, 34(10): 105009. doi: 10.1088/1674-4926/34/10/105009

[15]

Ren Tianling, Yang Chen, Liu Feng, Liu Litian, Wang A Z, Zhang Xiao. Equivalent Circuit Analysis of an RF Integrated Inductor with Ferrite Thin-Film. J. Semicond., 2006, 27(3): 511.

[16]

Xiaojun Guo. High density three dimensional integration of organic transistors. J. Semicond., 2019, 40(3): 030201. doi: 10.1088/1674-4926/40/3/030201

[17]

Neha Gupta, Priyanka Parihar, Vaibhav Neema. Application of source biasing technique for energy efficient DECODER circuit design: memory array application. J. Semicond., 2018, 39(4): 045001. doi: 10.1088/1674-4926/39/4/045001

[18]

Li Ma, Hongliang Zhu, Song Liang, Baojun Wang, Can Zhang, Lingjuan Zhao, Jing Bian, Minghua Chen. A 1.55-μm laser array monolithically integrated with an MMI combiner. J. Semicond., 2013, 34(4): 044007. doi: 10.1088/1674-4926/34/4/044007

[19]

Zhao Yan, Wu Lihua, Han Xiaowei, Li Yan, Zhang Qianli, Chen Liang, Zhang Guoquan, Li Jianzhong, Yang Bo, Gao Jiantou, Wang Jian, Li Ming, Liu Guizhai, Zhang Feng, Guo Xufeng, Zhao Kai, Stanley L. Chen, Yu Fang, Liu Zhongli. An IO block array in a radiation-hardened SOI SRAM-based FPGA. J. Semicond., 2012, 33(1): 015010. doi: 10.1088/1674-4926/33/1/015010

[20]

Eerdunchaolu, Wuyunqimuge, Xu Qiu, Bai Xufang. Properties of Quasi-Two-Dimensional Strong-CouplingMagnetopolarons in Magnetic Fields. J. Semicond., 2006, 27(5): 824.

Search

Advanced Search >>

GET CITATION

J Li, X C Wei, Y F Shu. Equivalent radiation source of 3D package for electromagnetic characteristics analysis[J]. J. Semicond., 2017, 38(10): 105010. doi: 10.1088/1674-4926/38/10/105010.

Export: BibTex EndNote

Article Metrics

Article views: 748 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 23 March 2017 Manuscript revised: 13 April 2017 Online: Published: 01 October 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误