J. Semicond. > Volume 38 > Issue 11 > Article Number: 114001

Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures

G. Nagaraju 1, , K. Ravindranatha Reddy 2, and V. Rajagopal Reddy 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I–V and C–V techniques. The estimated barrier heights (BH) of as-deposited and 200 °C annealed SBDs are 0.80 eV ( I–V)/0.93 eV (C–V) and 0.87 eV (I–V)/1.03 eV (C–V). However, the BH rises to 0.99 eV (I–V)/ 1.18 eV(C–V) and then slightly deceases to 0.92 eV (I–V)/1.03 eV (C–V) after annealing at 300 °C and 400 °C. The utmost BH is attained after annealing at 300 °C and thus the optimum annealing for SBD is 300 °C. By applying Cheung’s functions, the series resistance of the SBD is estimated. The BHs estimated by I–V, Cheung’s and ΨSV plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 °C annealing and then slightly increases after annealing at 400 °C. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole–Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.

Key words: p-GaNrare-earth Dy Schottky contactsannealing effectselectrical propertiesenergy distribution profilescarrier transport mechanism

Abstract: The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I–V and C–V techniques. The estimated barrier heights (BH) of as-deposited and 200 °C annealed SBDs are 0.80 eV ( I–V)/0.93 eV (C–V) and 0.87 eV (I–V)/1.03 eV (C–V). However, the BH rises to 0.99 eV (I–V)/ 1.18 eV(C–V) and then slightly deceases to 0.92 eV (I–V)/1.03 eV (C–V) after annealing at 300 °C and 400 °C. The utmost BH is attained after annealing at 300 °C and thus the optimum annealing for SBD is 300 °C. By applying Cheung’s functions, the series resistance of the SBD is estimated. The BHs estimated by I–V, Cheung’s and ΨSV plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 °C annealing and then slightly increases after annealing at 400 °C. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole–Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.

Key words: p-GaNrare-earth Dy Schottky contactsannealing effectselectrical propertiesenergy distribution profilescarrier transport mechanism



References:

[1]

Morkoc H, Strite S, Gao G B. Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies[J]. J Appl Phys, 1994, 76(3): 1363. doi: 10.1063/1.358463

[2]

Jain S C, Willander M, Narayan J. III-nitrides: growth, characterization, and properties[J]. J Appl Phys, 2000, 87(3): 965. doi: 10.1063/1.371971

[3]

Ambacher O. Growth and applications of group III-nitrides[J]. J Phys D, 1998, 31(20): 2653. doi: 10.1088/0022-3727/31/20/001

[4]

Moon J. Microwave noise performance of AlGaN-GaN HEMTs with small DC power dissipation[J]. IEEE Electron Device Lett, 2002, 23(11): 637. doi: 10.1109/LED.2002.803766

[5]

Mistele D, Rotter T, Rover K S. First AlGaN/GaN MOSFET with photoanodic gate dielectric[J]. Mater Sci Eng B, 2002, 93(1–3): 107. doi: 10.1016/S0921-5107(02)00052-1

[6]

Brown J, Borges R, Pinner E. AlGaN/GaN HFETs fabricated on 100-mm GaN on silicon (111) substrates[J]. Solid-State Electron, 2002, 46(10): 1535. doi: 10.1016/S0038-1101(02)00101-6

[7]

Matioli E, Brinkley S, Kelchner K M. High-brightness polarized light-emitting diodes[J]. Light Sci Appl, 2012, 1(8): e22. doi: 10.1038/lsa.2012.22

[8]

Wu J. When group-III nitrides go infrared: new properties and perspectives[J]. J Appl Phys, 2009, 106(1): 011101. doi: 10.1063/1.3155798

[9]

Mori T, Kozawa T, Ohwaki T. Schottky barriers and contact resistances on p-type GaN[J]. Appl Phys Lett, 1996, 69(23): 3537. doi: 10.1063/1.117237

[10]

Cao X. Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN[J]. Appl Phys Lett, 1999, 75(26): 4130. doi: 10.1063/1.125559

[11]

Shiojima K, Sugahara T, Sakai S. Large Schottky barriers for Ni/p-GaN contacts[J]. Appl Phys Lett, 1999, 74(14): 1936. doi: 10.1063/1.123733

[12]

Hibbard D L, Chuang R W, Zhao Y S. Thermally induced variation in barrier height and ideality factor of Ni/Au contacts to p-GaN[J]. J Electron Mater, 2000, 29(3): 291. doi: 10.1007/s11664-000-0065-9

[13]

Yu L S, Qiao D, Jia L. Study of Schottky barrier of Ni on P-GaN[J]. Appl Phys Lett, 2001, 79(27): 4536. doi: 10.1063/1.1428773

[14]

Hartlieb P J, Roskowski A, Davis R F. Pd growth and subsequent Schottky barrier formation on chemical vapor cleaned p-type GaN surfaces[J]. J Appl Phys, 2002, 91(2): 732. doi: 10.1063/1.1424060

[15]

Tan C K, Aziz A A, Yam F K. Schottky barrier properties of various metal (Zr, Ti, Cr, Pt) contact on p-GaN revealed from I–V–T measurement[J]. Appl Surf Sci, 2006, 252(16): 5930. doi: 10.1016/j.apsusc.2005.08.018

[16]

Stafford L, Voss L F, Pearton S J. Schottky barrier height of boride-based rectifying contacts to p-GaN[J]. Appl Phys Lett, 2006, 89(13): 132110. doi: 10.1063/1.2357855

[17]

Fukushima Y, Ogisu K, Kuzuhara M. I–V and C–V characteristics of rare-earth-metal/p-GaN Schottky contacts[J]. Phys Stat Sol C, 2009, 6(S2): S856. doi: 10.1002/pssc.v6.5s2

[18]

Greco G, Prystawko P, Leszczynski M. Electro-structural evolution and Schottky barrier height in annealed Au/Ni contacts onto p-GaN[J]. J Appl Phys, 2011, 110(12): 123703. doi: 10.1063/1.3669407

[19]

Choi Y Y, Kim S, Oh M. Investigation of Fermi level pinning at semipolar (11–22) p-type GaN surfaces[J]. Superlattices Microstruct, 2015, 77: 76. doi: 10.1016/j.spmi.2014.10.031

[20]

Naganawa M, Aoki T, Son J S. Electrical characteristics of a-plane low-Mg-doped p-GaN Schottky contacts[J]. Phys Stat Sol B, 2015, 252(5): 1024. doi: 10.1002/pssb.v252.5

[21]

Jang S H, Jang J S. Electrical characteristics and carrier transport mechanism for Ti/p-GaN Schottky diodes[J]. Electron Mater Lett, 2013, 9(2): 245. doi: 10.1007/s13391-012-2175-y

[22]

Nagaraju G, Dasaradha Rao L, Rajagopal Reddy V. Annealing effects on the electrical, structural and morphological properties of Ti/p-GaN/Ni/Au Schottky diode[J]. Appl Phys A, 2015, 12(1): 131.

[23]

Rajagopal Reddy V, Asha B, Choi C J. Effects of annealing on electrical characteristics and current transport mechanisms of the Y/p-GaN Schottky diode[J]. J Electron Mater, 2016, 45(7): 3268. doi: 10.1007/s11664-016-4490-9

[24]

Jyothi I, Janardhanam V, Kim J H. Electrical and structural properties of Au/Yb Schottky contact on p-type GaN as a function of the annealing temperature[J]. J Alloys Compd, 2016, 688: 875. doi: 10.1016/j.jallcom.2016.07.292

[25]

Sze S M. Physics of semiconductor devices. 2nd ed. New York: Wiley, 1981

[26]

Lee K N, Cao X A, Abernathy C R. Effects of thermal stability of GaN epi-layer on the Schottky diodes[J]. Solid-State Electron, 2000, 44(7): 1203. doi: 10.1016/S0038-1101(00)00041-1

[27]

Rhoderick E H, Williams R H. Metal semiconductor contacts. 2nd ed. Oxford: Clarendon Press, 1988

[28]

Tung R T. Electron transport at metal–semiconductor interfaces: general theory[J]. Phys Rev B, 1992, 45(23): 13509. doi: 10.1103/PhysRevB.45.13509

[29]

Crowell C R. The physical significance of the anomalies in Schottky barriers[J]. Solid-State Electron, 1977, 20(3): 171. doi: 10.1016/0038-1101(77)90180-0

[30]

Cheung S K, Cheung N W. Extraction of Schottky diode parameters from forward current–voltage characteristics[J]. Appl Phys Lett, 1986, 49(2): 85. doi: 10.1063/1.97359

[31]

Chattopadhyay S, Bera L K, Ray S K. Extraction of interface state density of Pt/p-strained-Si Schottky diode[J]. Thin Solid Films, 1998, 335(1/2): 142.

[32]

Chattopadhyay P. A new technique for the determination of barrier height of Schottky barrier diodes[J]. Solid-State Electron, 1995, 38(3): 739. doi: 10.1016/0038-1101(94)00167-E

[33]

Bouiadjra W B, Kadaoui M A, Saidane A. Influence of annealing temperature on electrical characteristics of Ti/Au/GaAsN Schottky diode with 0.2% nitrogen incorporation[J]. Mater Sci Semicond Process, 2014, 22: 92. doi: 10.1016/j.mssp.2014.01.041

[34]

Lien C D, So F C T, Nicolet M A. An improved forward I–V method for nonideal Schottky diodes with high series resistance[J]. IEEE Trans Electron Dev, 1984, 31(10): 1502. doi: 10.1109/T-ED.1984.21739

[35]

Aubry V, Meyer F. Schottky diodes with high series resistance: limitations of forward I–V methods[J]. J Appl Phys, 1994, 76(12): 7973. doi: 10.1063/1.357909

[36]

Fontaine C, Okumura T, Tu K N. Interfacial reaction and Schottky barrier between Pt and GaAs[J]. J Appl Phys, 1983, 54(3): 1404. doi: 10.1063/1.332165

[37]

Song Y P, Van Meirhaeghe R L, Laflere W H. On the difference in apparent barrier height as obtained from capacitance–voltage and current–voltage–temperature measurements on Al/p-InP Schottky barriers[J]. Solid-State Electron, 1986, 29(6): 633. doi: 10.1016/0038-1101(86)90145-0

[38]

Werner J H, Guttler H. Barrier inhomogeneities at Schottky contacts[J]. J Appl Phys, 1991, 69(3): 1522. doi: 10.1063/1.347243

[39]

Gullu O, Turut A. Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures[J]. J Appl Phys, 2009, 106(10): 103717. doi: 10.1063/1.3261835

[40]

Card H C, Rhoderick E H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes[J]. J Phys D, 1971, 4(29): 1589.

[41]

Kolnik J, Ozvold M. The influence of inversion surface layers on the evaluation of the interface state energy distribution from Schottky diode I–V characteristics[J]. Phys Stat Sol A, 1990, 122: 583. doi: 10.1002/(ISSN)1521-396X

[42]

Kar S, Dahlke W E. Interface states in MOS structures with 20-40 Å thick SiO2 films on nondegenerate Si[J]. Solid-State Electron, 1972, 15(2): 221. doi: 10.1016/0038-1101(72)90056-1

[43]

Aydogan S, Saglam M, Turut A. The effects of the temperature on the some parameters obtained from current–voltage and capacitance–voltage characteristics of polypyrrole/n-Si structure[J]. Polymer, 2005, 46(2): 563. doi: 10.1016/j.polymer.2004.11.006

[44]

Forrest S R. Ultrathin organic films grown by organic molecular beam deposition and related techniques[J]. Chem Rev, 1997, 97(6): 1793. doi: 10.1021/cr941014o

[45]

Yeargan J R, Taylor H L. The Poole-Frenkel effect with compensation present[J]. J Appl Phys, 1968, 39(12): 5600. doi: 10.1063/1.1656022

[46]

Lee H D. Characterization of shallow silicided junctions for sub-quarter micron ULSI technology-extraction of silicidation induced Schottky contact area[J]. IEEE Trans Electron Devices, 2000, 47(4): 762. doi: 10.1109/16.830991

[47]

Janardhanam V, Lee H K, Shim K H. Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers[J]. J Alloys Compd, 2010, 504(1): 146. doi: 10.1016/j.jallcom.2010.05.074

[48]

Ashok Kumar A, Rajagopal Reddy V, Janardhanam V. Electrical properties of Pt/n-type Ge Schottky contact with PEDOT: PSS interlayer[J]. J Alloys Compd, 2013, 549: 18. doi: 10.1016/j.jallcom.2012.09.085

[49]

Rajagopal Reddy V, Janardhanam V, Ju J W. Electrical properties of Au/Bi0.5Na0.5TiO3-BaTiO3/n-GaN metal–insulator–semiconductor (MIS) structure[J]. Semicond Sci Technol, 2014, 29(7): 075001. doi: 10.1088/0268-1242/29/7/075001

[1]

Morkoc H, Strite S, Gao G B. Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies[J]. J Appl Phys, 1994, 76(3): 1363. doi: 10.1063/1.358463

[2]

Jain S C, Willander M, Narayan J. III-nitrides: growth, characterization, and properties[J]. J Appl Phys, 2000, 87(3): 965. doi: 10.1063/1.371971

[3]

Ambacher O. Growth and applications of group III-nitrides[J]. J Phys D, 1998, 31(20): 2653. doi: 10.1088/0022-3727/31/20/001

[4]

Moon J. Microwave noise performance of AlGaN-GaN HEMTs with small DC power dissipation[J]. IEEE Electron Device Lett, 2002, 23(11): 637. doi: 10.1109/LED.2002.803766

[5]

Mistele D, Rotter T, Rover K S. First AlGaN/GaN MOSFET with photoanodic gate dielectric[J]. Mater Sci Eng B, 2002, 93(1–3): 107. doi: 10.1016/S0921-5107(02)00052-1

[6]

Brown J, Borges R, Pinner E. AlGaN/GaN HFETs fabricated on 100-mm GaN on silicon (111) substrates[J]. Solid-State Electron, 2002, 46(10): 1535. doi: 10.1016/S0038-1101(02)00101-6

[7]

Matioli E, Brinkley S, Kelchner K M. High-brightness polarized light-emitting diodes[J]. Light Sci Appl, 2012, 1(8): e22. doi: 10.1038/lsa.2012.22

[8]

Wu J. When group-III nitrides go infrared: new properties and perspectives[J]. J Appl Phys, 2009, 106(1): 011101. doi: 10.1063/1.3155798

[9]

Mori T, Kozawa T, Ohwaki T. Schottky barriers and contact resistances on p-type GaN[J]. Appl Phys Lett, 1996, 69(23): 3537. doi: 10.1063/1.117237

[10]

Cao X. Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN[J]. Appl Phys Lett, 1999, 75(26): 4130. doi: 10.1063/1.125559

[11]

Shiojima K, Sugahara T, Sakai S. Large Schottky barriers for Ni/p-GaN contacts[J]. Appl Phys Lett, 1999, 74(14): 1936. doi: 10.1063/1.123733

[12]

Hibbard D L, Chuang R W, Zhao Y S. Thermally induced variation in barrier height and ideality factor of Ni/Au contacts to p-GaN[J]. J Electron Mater, 2000, 29(3): 291. doi: 10.1007/s11664-000-0065-9

[13]

Yu L S, Qiao D, Jia L. Study of Schottky barrier of Ni on P-GaN[J]. Appl Phys Lett, 2001, 79(27): 4536. doi: 10.1063/1.1428773

[14]

Hartlieb P J, Roskowski A, Davis R F. Pd growth and subsequent Schottky barrier formation on chemical vapor cleaned p-type GaN surfaces[J]. J Appl Phys, 2002, 91(2): 732. doi: 10.1063/1.1424060

[15]

Tan C K, Aziz A A, Yam F K. Schottky barrier properties of various metal (Zr, Ti, Cr, Pt) contact on p-GaN revealed from I–V–T measurement[J]. Appl Surf Sci, 2006, 252(16): 5930. doi: 10.1016/j.apsusc.2005.08.018

[16]

Stafford L, Voss L F, Pearton S J. Schottky barrier height of boride-based rectifying contacts to p-GaN[J]. Appl Phys Lett, 2006, 89(13): 132110. doi: 10.1063/1.2357855

[17]

Fukushima Y, Ogisu K, Kuzuhara M. I–V and C–V characteristics of rare-earth-metal/p-GaN Schottky contacts[J]. Phys Stat Sol C, 2009, 6(S2): S856. doi: 10.1002/pssc.v6.5s2

[18]

Greco G, Prystawko P, Leszczynski M. Electro-structural evolution and Schottky barrier height in annealed Au/Ni contacts onto p-GaN[J]. J Appl Phys, 2011, 110(12): 123703. doi: 10.1063/1.3669407

[19]

Choi Y Y, Kim S, Oh M. Investigation of Fermi level pinning at semipolar (11–22) p-type GaN surfaces[J]. Superlattices Microstruct, 2015, 77: 76. doi: 10.1016/j.spmi.2014.10.031

[20]

Naganawa M, Aoki T, Son J S. Electrical characteristics of a-plane low-Mg-doped p-GaN Schottky contacts[J]. Phys Stat Sol B, 2015, 252(5): 1024. doi: 10.1002/pssb.v252.5

[21]

Jang S H, Jang J S. Electrical characteristics and carrier transport mechanism for Ti/p-GaN Schottky diodes[J]. Electron Mater Lett, 2013, 9(2): 245. doi: 10.1007/s13391-012-2175-y

[22]

Nagaraju G, Dasaradha Rao L, Rajagopal Reddy V. Annealing effects on the electrical, structural and morphological properties of Ti/p-GaN/Ni/Au Schottky diode[J]. Appl Phys A, 2015, 12(1): 131.

[23]

Rajagopal Reddy V, Asha B, Choi C J. Effects of annealing on electrical characteristics and current transport mechanisms of the Y/p-GaN Schottky diode[J]. J Electron Mater, 2016, 45(7): 3268. doi: 10.1007/s11664-016-4490-9

[24]

Jyothi I, Janardhanam V, Kim J H. Electrical and structural properties of Au/Yb Schottky contact on p-type GaN as a function of the annealing temperature[J]. J Alloys Compd, 2016, 688: 875. doi: 10.1016/j.jallcom.2016.07.292

[25]

Sze S M. Physics of semiconductor devices. 2nd ed. New York: Wiley, 1981

[26]

Lee K N, Cao X A, Abernathy C R. Effects of thermal stability of GaN epi-layer on the Schottky diodes[J]. Solid-State Electron, 2000, 44(7): 1203. doi: 10.1016/S0038-1101(00)00041-1

[27]

Rhoderick E H, Williams R H. Metal semiconductor contacts. 2nd ed. Oxford: Clarendon Press, 1988

[28]

Tung R T. Electron transport at metal–semiconductor interfaces: general theory[J]. Phys Rev B, 1992, 45(23): 13509. doi: 10.1103/PhysRevB.45.13509

[29]

Crowell C R. The physical significance of the anomalies in Schottky barriers[J]. Solid-State Electron, 1977, 20(3): 171. doi: 10.1016/0038-1101(77)90180-0

[30]

Cheung S K, Cheung N W. Extraction of Schottky diode parameters from forward current–voltage characteristics[J]. Appl Phys Lett, 1986, 49(2): 85. doi: 10.1063/1.97359

[31]

Chattopadhyay S, Bera L K, Ray S K. Extraction of interface state density of Pt/p-strained-Si Schottky diode[J]. Thin Solid Films, 1998, 335(1/2): 142.

[32]

Chattopadhyay P. A new technique for the determination of barrier height of Schottky barrier diodes[J]. Solid-State Electron, 1995, 38(3): 739. doi: 10.1016/0038-1101(94)00167-E

[33]

Bouiadjra W B, Kadaoui M A, Saidane A. Influence of annealing temperature on electrical characteristics of Ti/Au/GaAsN Schottky diode with 0.2% nitrogen incorporation[J]. Mater Sci Semicond Process, 2014, 22: 92. doi: 10.1016/j.mssp.2014.01.041

[34]

Lien C D, So F C T, Nicolet M A. An improved forward I–V method for nonideal Schottky diodes with high series resistance[J]. IEEE Trans Electron Dev, 1984, 31(10): 1502. doi: 10.1109/T-ED.1984.21739

[35]

Aubry V, Meyer F. Schottky diodes with high series resistance: limitations of forward I–V methods[J]. J Appl Phys, 1994, 76(12): 7973. doi: 10.1063/1.357909

[36]

Fontaine C, Okumura T, Tu K N. Interfacial reaction and Schottky barrier between Pt and GaAs[J]. J Appl Phys, 1983, 54(3): 1404. doi: 10.1063/1.332165

[37]

Song Y P, Van Meirhaeghe R L, Laflere W H. On the difference in apparent barrier height as obtained from capacitance–voltage and current–voltage–temperature measurements on Al/p-InP Schottky barriers[J]. Solid-State Electron, 1986, 29(6): 633. doi: 10.1016/0038-1101(86)90145-0

[38]

Werner J H, Guttler H. Barrier inhomogeneities at Schottky contacts[J]. J Appl Phys, 1991, 69(3): 1522. doi: 10.1063/1.347243

[39]

Gullu O, Turut A. Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures[J]. J Appl Phys, 2009, 106(10): 103717. doi: 10.1063/1.3261835

[40]

Card H C, Rhoderick E H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes[J]. J Phys D, 1971, 4(29): 1589.

[41]

Kolnik J, Ozvold M. The influence of inversion surface layers on the evaluation of the interface state energy distribution from Schottky diode I–V characteristics[J]. Phys Stat Sol A, 1990, 122: 583. doi: 10.1002/(ISSN)1521-396X

[42]

Kar S, Dahlke W E. Interface states in MOS structures with 20-40 Å thick SiO2 films on nondegenerate Si[J]. Solid-State Electron, 1972, 15(2): 221. doi: 10.1016/0038-1101(72)90056-1

[43]

Aydogan S, Saglam M, Turut A. The effects of the temperature on the some parameters obtained from current–voltage and capacitance–voltage characteristics of polypyrrole/n-Si structure[J]. Polymer, 2005, 46(2): 563. doi: 10.1016/j.polymer.2004.11.006

[44]

Forrest S R. Ultrathin organic films grown by organic molecular beam deposition and related techniques[J]. Chem Rev, 1997, 97(6): 1793. doi: 10.1021/cr941014o

[45]

Yeargan J R, Taylor H L. The Poole-Frenkel effect with compensation present[J]. J Appl Phys, 1968, 39(12): 5600. doi: 10.1063/1.1656022

[46]

Lee H D. Characterization of shallow silicided junctions for sub-quarter micron ULSI technology-extraction of silicidation induced Schottky contact area[J]. IEEE Trans Electron Devices, 2000, 47(4): 762. doi: 10.1109/16.830991

[47]

Janardhanam V, Lee H K, Shim K H. Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers[J]. J Alloys Compd, 2010, 504(1): 146. doi: 10.1016/j.jallcom.2010.05.074

[48]

Ashok Kumar A, Rajagopal Reddy V, Janardhanam V. Electrical properties of Pt/n-type Ge Schottky contact with PEDOT: PSS interlayer[J]. J Alloys Compd, 2013, 549: 18. doi: 10.1016/j.jallcom.2012.09.085

[49]

Rajagopal Reddy V, Janardhanam V, Ju J W. Electrical properties of Au/Bi0.5Na0.5TiO3-BaTiO3/n-GaN metal–insulator–semiconductor (MIS) structure[J]. Semicond Sci Technol, 2014, 29(7): 075001. doi: 10.1088/0268-1242/29/7/075001

[1]

Pengfei Wang, Ruihua Nan, Zengyun Jian. The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals. J. Semicond., 2017, 38(6): 062002. doi: 10.1088/1674-4926/38/6/062002

[2]

Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors. J. Semicond., 2019, 40(4): 042801. doi: 10.1088/1674-4926/40/4/042801

[3]

Wang Lili, Zhang Shuming, Yang Hui, Liang Junwu. Optical and Electrical Properties of GaN:Mg Grown by MOCVD. J. Semicond., 2008, 29(1): 29.

[4]

Yongye Liang, Kyungsoo Jang, S. Velumani, Cam Phu Thi Nguyen, Junsin Yi. Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor. J. Semicond., 2015, 36(2): 024007. doi: 10.1088/1674-4926/36/2/024007

[5]

Liu Ting, Zou Zeya, Wang Zhen, Zhao Hong, Zhao Wenbo, Luo Muchang, Zhou Xun, Yang Xiaobo, Liao Xiuying. Growth of p-GaN on High-Temperature AlN Templates. J. Semicond., 2008, 29(1): 128.

[6]

Zhang Xiaomin, Wang Yanjie, Yang Ziwen, Liao Hui, Chen Weihua, Li Ding, Li Rui, Yang Zhijian, Zhang Guoyi, Hu Xiaodong. Optimization and Analysis of Magnesium Doping in MOCVD Grown p-GaN. J. Semicond., 2008, 29(8): 1475.

[7]

Xiangdong Li, Karen Geens, Nooshin Amirifar, Ming Zhao, Shuzhen You, Niels Posthuma, Hu Liang, Guido Groeseneken, Stefaan Decoutere. Inegration of GaN analog building blocks on p-GaN wafers for GaN ICs. J. Semicond., 2020, 41(0): -1.

[8]

Binglei Fu, Naixin Liu, Zhe Liu, Jinmin Li, Junxi Wang. Advantages of InGaN/GaN light emitting diodes with p-GaN grown under high pressure. J. Semicond., 2014, 35(11): 114007. doi: 10.1088/1674-4926/35/11/114007

[9]

Wang Yanjie, Yang Ziwen, Liao Hui, Hu Chengyu, Pan Yaobo, Yang Zhijian, Zhang Bei, Zhang Guoyi, Hu Xiaodong. Current-Voltage Characteristic of Alloyed Ni/Au on p-GaN. J. Semicond., 2007, 28(S1): 372.

[10]

Chao Xiong, Jin Xiao, Lei Chen, Wenhan Du, Weilong Xu, Dongdong Hou. Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer. J. Semicond., 2018, 39(12): 124013. doi: 10.1088/1674-4926/39/12/124013

[11]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[12]

Jiaming Luo, Min Guan, Yang Zhang, Liqiang Chen, Yiping Zeng. The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors. J. Semicond., 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007

[13]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[14]

Rahul Kumar, Parag Bhargava, Ritu Srivastava, Priyanka Tyagi. Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3. J. Semicond., 2015, 36(6): 064001. doi: 10.1088/1674-4926/36/6/064001

[15]

Mihir M. Vora, Aditya M. Vora. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond., 2012, 33(1): 012001. doi: 10.1088/1674-4926/33/1/012001

[16]

Zhao Desheng, Zhang Shuming, Zhu Jianjun, Zhao Degang, Duan Lihong, Zhang Baoshun, Yang Hui. Effect of Surface Treatment on P-GaN Ohmic Contact Property. J. Semicond., 2007, 28(S1): 545.

[17]

Rahul Kumar, Ritu Srivastava, Punita Singh. Synthesis and electroluminescence characterization of a new aluminum complex,[8-hydroxyquinoline] bis[2, 2'bipyridine] aluminum Al(Bpy)2q. J. Semicond., 2016, 37(1): 013001. doi: 10.1088/1674-4926/37/1/013001

[18]

Shengnan Zhang, Xiaozheng Lian, Yanchao Ma, Weidan Liu, Yingwu Zhang, Yongkuan Xu, Hongjuan Cheng. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003

[19]

Paragjyoti Gogoi, Rajib Saikia, Sanjib Changmai. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique. J. Semicond., 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002

[20]

Tingting Chen, Bing Liu, Xiujian Chou, Jun Liu, Chenyang Xue, Wendong Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics. J. Semicond., 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002

Search

Advanced Search >>

GET CITATION

G. Nagaraju, K. R. Reddy, V. R. Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures[J]. J. Semicond., 2017, 38(11): 114001. doi: 10.1088/1674-4926/38/11/114001.

Export: BibTex EndNote

Article Metrics

Article views: 1668 Times PDF downloads: 31 Times Cited by: 0 Times

History

Manuscript received: 27 January 2017 Manuscript revised: 04 May 2017 Online: Uncorrected proof: 30 October 2017 Accepted Manuscript: 13 November 2017 Published: 01 November 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误