J. Semicond. > Volume 38 > Issue 11 > Article Number: 114007

Influence of band gap of p-type hydrogenated nanocrystalline silicon layer on the short-circuit current density in thin-film silicon solar cells

Shuwei Zhang 1, 2, and Xiangbo Zeng 1, 2, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The impact of the optical band gap (Eg) of a p-type hydrogenated nanocrystalline silicon layer on the short-circuit current density (Jsc) of a thin-film silicon solar cell is assessed. We have found that the Jsc reaches maximum when the Eg reaches optimum. The reason for the Jsc on Eg needs to be clarified. Our results exhibit that maximum Jsc is the balance between dark current and photocurrent. We show here that this dark current results from the density of defects in the p-layer and the barrier at the interface between p- and i-layers. An optimum cell can be designed by optimizing the p-layer via reducing the density of defects in the p-layer and the barrier at the p/i interface. Finally, a 6.6% increase in Jsc was obtained at optimum Eg for n–i–p solar cells.

Key words: nanocrystalline siliconband gapp-layershort-circuit current densitysolar cells

Abstract: The impact of the optical band gap (Eg) of a p-type hydrogenated nanocrystalline silicon layer on the short-circuit current density (Jsc) of a thin-film silicon solar cell is assessed. We have found that the Jsc reaches maximum when the Eg reaches optimum. The reason for the Jsc on Eg needs to be clarified. Our results exhibit that maximum Jsc is the balance between dark current and photocurrent. We show here that this dark current results from the density of defects in the p-layer and the barrier at the interface between p- and i-layers. An optimum cell can be designed by optimizing the p-layer via reducing the density of defects in the p-layer and the barrier at the p/i interface. Finally, a 6.6% increase in Jsc was obtained at optimum Eg for n–i–p solar cells.

Key words: nanocrystalline siliconband gapp-layershort-circuit current densitysolar cells



References:

[1]

Sharma M, Juneja S, Sudhakar S. Optimization of a-Si:H absorber layer grown under a low pressure regime by plasma-enhanced chemical vapor deposition: revisiting the significance of the p/i interface for solar cells[J]. Mater Sci Semicond Process, 2016, 43: 41. doi: 10.1016/j.mssp.2015.10.021

[2]

Chen X, Liu J, Jia F. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells[J]. J Semicond, 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003

[3]

Tawada Y, Okamoto H, Hamakawa Y. a-SiC:H/a-Si:H heterojunction solar cell having more than 7.1% conversion efficiency[J]. Appl Phys Lett, 1981, 39(3): 237. doi: 10.1063/1.92692

[4]

Lee Y J, Lee S H, Schropp R E I. Multi-layered hydrogenated p-type microcrystalline silicon windows for a-Si:H thin film solar cells on opaque substrates[J]. Int J Hydrogen Energy, 2016, 41(15): 6240. doi: 10.1016/j.ijhydene.2016.03.011

[5]

Luque. A, Hegedus S, Handbook of photovoltaic science and engineering. New York: John Wiley & Sons, 2011, 529

[6]

Tan H, Babal P, Zeman M. Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells[J]. Sol Energy Mater Sol Cells, 2015, 132: 597. doi: 10.1016/j.solmat.2014.10.020

[7]

Ma J, Ni J, Zhang J. Improvement of solar cells performance by boron doped amorphous silicon carbide/nanocrystalline silicon hybrid window layers[J]. Sol Energy Mater Sol Cells, 2013, 114(4): 9.

[8]

Ashida Y. Single-junction a-Si solar cells with over 13% efficiency[J]. Sol Energy Mater Sol Cells, 1994, 34(1–4): 291. doi: 10.1016/0927-0248(94)90053-1

[9]

Hishida M, Sekimoto T, Terakawa A. Designing band offset of a-SiO:H solar cells for very high open-circuit voltage (1.06 V) by adjusting band gap of p-i-n junction[J]. Jpn J Appl Phys, 2014, 53(9): 092301. doi: 10.7567/JJAP.53.092301

[10]

Schade H, Smith Z E. Optical properties and quantum efficiency of aSi1–X/CX/:H/as:H solar cells[J]. J Appl Phys, 1985, 57(2): 568. doi: 10.1063/1.334739

[11]

Das D, Kar D. Self-assembled nc-Si-QD/a-SiC thin films from planar ICP-CVD plasma without H2-dilution: a combination of wide optical gap, high conductivity and preferred 〈220〉 crystallographic orientation, uniquely appropriate for nc-Si solar cells[J]. RSC Adva, 2015, 6(5): 3860.

[12]

Liao X, Du W, Yang X. Nanostructure in the p-layer and its impacts on amorphous silicon solar cells[J]. J Non-Cryst Solids, 2006, 352(9–20): 1841. doi: 10.1016/j.jnoncrysol.2005.11.110

[13]

Koval R J, Chen C, Ferreira G M. Maximization of the open circuit voltage for hydrogenated amorphous silicon n–i–p, solar cells by incorporation of protocrystalline silicon p-type layers[J]. Appl Phys Lett, 2002, 81(7): 1258. doi: 10.1063/1.1499735

[14]

Guha S, Yang J, Nath P. Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells[J]. Appl Phys Lett, 1986, 49(4): 218. doi: 10.1063/1.97176

[15]

Vygranenko Y, Fathi E, Sazonov A. Nanocrystalline p-layer for a-Si:H p–i–n solar cells and photodiodes[J]. Sol Energy Mater Sol Cells, 2010, 94(11): 1860. doi: 10.1016/j.solmat.2010.06.044

[16]

Vasiliev I, Ogut S, Chelikowsky J R. Ab initio absorption spectra and optical gaps in nanocrystalline silicon[J]. Phys Rev Lett, 2001, 86(9): 1813. doi: 10.1103/PhysRevLett.86.1813

[17]

Delley B, Steigmeier E F. Size dependence of band gaps in silicon nanostructures[J]. Appl Phys Lett, 1995, 67(16): 2370. doi: 10.1063/1.114348

[18]

Delley B, Steigmeier E F. Quantum confinement in Si nanocrystals[J]. Phys Rev B, 1993, 47(3): 1397. doi: 10.1103/PhysRevB.47.1397

[19]

Polemi A, Alu A, Engheta N. Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition[J]. J Vac Sci Technol A, 2003, 21(4): 1048. doi: 10.1116/1.1586275

[20]

Yang D, Zhu X, Sun H. Effects of substrate temperature on structural, optical and morphological properties of hydrogenated nanocrystalline silicon thin films prepared by inductively coupled plasma chemical vapor deposition[J]. J Mater Sci: Mater Electron, 2015, 26(10): 7790. doi: 10.1007/s10854-015-3426-0

[21]

Swanepoel R. Determination of the thickness and optical constants of amorphous silicon[J]. J Phys E, 1983, 16(12): 1214. doi: 10.1088/0022-3735/16/12/023

[22]

Li Z, Zhang X, Han G. Electrical and optical properties of boron-doped nanocrystalline silicon films deposited by PECVD[J]. Phys Status Solidi Appl Mater, 2010, 207(1): 144. doi: 10.1002/pssa.v207:1

[23]

Hou G, Fang J, Fan Q H. Nanostructured silicon p-layer obtained by radio frequency power profiling process for high-efficiency amorphous silicon solar cell[J]. Sol Energy Mater Sol Cells, 2015, 134: 395. doi: 10.1016/j.solmat.2014.12.017

[24]

Liu X, Zi W, Liu S. p-Layer bandgap engineering for high efficiency thin film silicon solar cells[J]. Mater Sci Semicond Process, 2015, 39: 192. doi: 10.1016/j.mssp.2015.04.011

[25]

Wronski C R, Collins R W. Phase engineering of a-Si:H solar cells for optimized performance[J]. Solar Energy, 2004, 77(6): 877. doi: 10.1016/j.solener.2004.03.008

[26]

Garrido B, Morante J R, Achiq A. Structural, optical, and electrical properties of nanocrystalline silicon films deposited by hydrogen plasma sputtering[J]. J Vac Sci Technol B, 1998, 16(4): 1851. doi: 10.1116/1.590097

[27]

Cheng Q, Xu S, Ostrikov K K. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas[J]. Nanotechnology, 2009, 20(21): 215606. doi: 10.1088/0957-4484/20/21/215606

[28]

Ali A M. Optical properties of nanocrystalline silicon films deposited by plasma-enhanced chemical vapor deposition[J]. Opt Mater, 2007, 30(2): 238. doi: 10.1016/j.optmat.2006.11.042

[29]

Hegedus S S. Current–voltage analysis of a-Si and a-SiGe solar cells including voltage-dependent photocurrent collection[J]. Prog Photovoltaics Res Appl, 1997, 5(3): 151. doi: 10.1002/(ISSN)1099-159X

[30]

Matsuda A, Takai M, Nishimoto T. Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate[J]. Sol Energy Mater Sol Cells, 2003, 78(1–4): 3. doi: 10.1016/S0927-0248(02)00431-2

[31]

Gangyi X, Tianmin W. Electrical characterization of N-type nanocrystalline silicon on p-type crystalline silicon (nc-Si:H/c-Si) heterojunctions[J]. Semicond Sci Technol, 2000, 15(6): 613. doi: 10.1088/0268-1242/15/6/322

[32]

Fang L, Baik S J, Lim K S. Tungsten oxide as a buffer layer inserted at the SnO2/p-a-SiC interface of pin-type amorphous silicon based solar cells[J]. Appl Phys Lett, 2010, 96(19): 106.

[33]

Belfar A, Aït-Kaci H. Effect of incorporating p-type hydrogenated nanocrystalline silicon buffer layer on amorphous silicon n–i–p solar cell performances[J]. Thin Solid Films, 2012, 525(25): 167.

[34]

Chatterjee P. A computer analysis of the effect of a wide-band-gap emitter layer on the performance of a-Si:H-based heterojunction solar cells[J]. J Appl Phys, 1996, 79(9): 7339. doi: 10.1063/1.361450

[35]

Hamma S, Roca i C P. Determination of the mobility gap of microcrystalline silicon and of the band discontinuities at the amorphous/microcrystalline silicon interface using in situ Kelvin probe technique[J]. Appl Phys Lett, 1999, 74(21): 3218. doi: 10.1063/1.124110

[36]

Arch J K, Rubinelli F A, Hou J. Computer analysis of the role of p-layer quality, thickness, transport mechanisms, and contact barrier height in the performance of hydrogenated amorphous silicon p–i–n solar cells[J]. J Appl Phys, 1991, 69(10): 7057. doi: 10.1063/1.347645

[37]

Cleef M W M V, Schropp R E I, Rubinelli F A. Significance of tunneling in p+ amorphous silicon carbide n crystalline silicon heterojunction solar cells[J]. Appl Phys Lett, 1998, 73(18): 2609. doi: 10.1063/1.122521

[38]

Liu S, Zeng X, Peng W. Improvement of amorphous silicon n–i–p solar cells by incorporating double-layer hydrogenated nanocrystalline silicon structure[J]. J Non-Cryst Solids, 2011, 357(1): 121. doi: 10.1016/j.jnoncrysol.2010.10.001

[1]

Sharma M, Juneja S, Sudhakar S. Optimization of a-Si:H absorber layer grown under a low pressure regime by plasma-enhanced chemical vapor deposition: revisiting the significance of the p/i interface for solar cells[J]. Mater Sci Semicond Process, 2016, 43: 41. doi: 10.1016/j.mssp.2015.10.021

[2]

Chen X, Liu J, Jia F. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells[J]. J Semicond, 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003

[3]

Tawada Y, Okamoto H, Hamakawa Y. a-SiC:H/a-Si:H heterojunction solar cell having more than 7.1% conversion efficiency[J]. Appl Phys Lett, 1981, 39(3): 237. doi: 10.1063/1.92692

[4]

Lee Y J, Lee S H, Schropp R E I. Multi-layered hydrogenated p-type microcrystalline silicon windows for a-Si:H thin film solar cells on opaque substrates[J]. Int J Hydrogen Energy, 2016, 41(15): 6240. doi: 10.1016/j.ijhydene.2016.03.011

[5]

Luque. A, Hegedus S, Handbook of photovoltaic science and engineering. New York: John Wiley & Sons, 2011, 529

[6]

Tan H, Babal P, Zeman M. Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells[J]. Sol Energy Mater Sol Cells, 2015, 132: 597. doi: 10.1016/j.solmat.2014.10.020

[7]

Ma J, Ni J, Zhang J. Improvement of solar cells performance by boron doped amorphous silicon carbide/nanocrystalline silicon hybrid window layers[J]. Sol Energy Mater Sol Cells, 2013, 114(4): 9.

[8]

Ashida Y. Single-junction a-Si solar cells with over 13% efficiency[J]. Sol Energy Mater Sol Cells, 1994, 34(1–4): 291. doi: 10.1016/0927-0248(94)90053-1

[9]

Hishida M, Sekimoto T, Terakawa A. Designing band offset of a-SiO:H solar cells for very high open-circuit voltage (1.06 V) by adjusting band gap of p-i-n junction[J]. Jpn J Appl Phys, 2014, 53(9): 092301. doi: 10.7567/JJAP.53.092301

[10]

Schade H, Smith Z E. Optical properties and quantum efficiency of aSi1–X/CX/:H/as:H solar cells[J]. J Appl Phys, 1985, 57(2): 568. doi: 10.1063/1.334739

[11]

Das D, Kar D. Self-assembled nc-Si-QD/a-SiC thin films from planar ICP-CVD plasma without H2-dilution: a combination of wide optical gap, high conductivity and preferred 〈220〉 crystallographic orientation, uniquely appropriate for nc-Si solar cells[J]. RSC Adva, 2015, 6(5): 3860.

[12]

Liao X, Du W, Yang X. Nanostructure in the p-layer and its impacts on amorphous silicon solar cells[J]. J Non-Cryst Solids, 2006, 352(9–20): 1841. doi: 10.1016/j.jnoncrysol.2005.11.110

[13]

Koval R J, Chen C, Ferreira G M. Maximization of the open circuit voltage for hydrogenated amorphous silicon n–i–p, solar cells by incorporation of protocrystalline silicon p-type layers[J]. Appl Phys Lett, 2002, 81(7): 1258. doi: 10.1063/1.1499735

[14]

Guha S, Yang J, Nath P. Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells[J]. Appl Phys Lett, 1986, 49(4): 218. doi: 10.1063/1.97176

[15]

Vygranenko Y, Fathi E, Sazonov A. Nanocrystalline p-layer for a-Si:H p–i–n solar cells and photodiodes[J]. Sol Energy Mater Sol Cells, 2010, 94(11): 1860. doi: 10.1016/j.solmat.2010.06.044

[16]

Vasiliev I, Ogut S, Chelikowsky J R. Ab initio absorption spectra and optical gaps in nanocrystalline silicon[J]. Phys Rev Lett, 2001, 86(9): 1813. doi: 10.1103/PhysRevLett.86.1813

[17]

Delley B, Steigmeier E F. Size dependence of band gaps in silicon nanostructures[J]. Appl Phys Lett, 1995, 67(16): 2370. doi: 10.1063/1.114348

[18]

Delley B, Steigmeier E F. Quantum confinement in Si nanocrystals[J]. Phys Rev B, 1993, 47(3): 1397. doi: 10.1103/PhysRevB.47.1397

[19]

Polemi A, Alu A, Engheta N. Electronic and structural properties of doped amorphous and nanocrystalline silicon deposited at low substrate temperatures by radio-frequency plasma-enhanced chemical vapor deposition[J]. J Vac Sci Technol A, 2003, 21(4): 1048. doi: 10.1116/1.1586275

[20]

Yang D, Zhu X, Sun H. Effects of substrate temperature on structural, optical and morphological properties of hydrogenated nanocrystalline silicon thin films prepared by inductively coupled plasma chemical vapor deposition[J]. J Mater Sci: Mater Electron, 2015, 26(10): 7790. doi: 10.1007/s10854-015-3426-0

[21]

Swanepoel R. Determination of the thickness and optical constants of amorphous silicon[J]. J Phys E, 1983, 16(12): 1214. doi: 10.1088/0022-3735/16/12/023

[22]

Li Z, Zhang X, Han G. Electrical and optical properties of boron-doped nanocrystalline silicon films deposited by PECVD[J]. Phys Status Solidi Appl Mater, 2010, 207(1): 144. doi: 10.1002/pssa.v207:1

[23]

Hou G, Fang J, Fan Q H. Nanostructured silicon p-layer obtained by radio frequency power profiling process for high-efficiency amorphous silicon solar cell[J]. Sol Energy Mater Sol Cells, 2015, 134: 395. doi: 10.1016/j.solmat.2014.12.017

[24]

Liu X, Zi W, Liu S. p-Layer bandgap engineering for high efficiency thin film silicon solar cells[J]. Mater Sci Semicond Process, 2015, 39: 192. doi: 10.1016/j.mssp.2015.04.011

[25]

Wronski C R, Collins R W. Phase engineering of a-Si:H solar cells for optimized performance[J]. Solar Energy, 2004, 77(6): 877. doi: 10.1016/j.solener.2004.03.008

[26]

Garrido B, Morante J R, Achiq A. Structural, optical, and electrical properties of nanocrystalline silicon films deposited by hydrogen plasma sputtering[J]. J Vac Sci Technol B, 1998, 16(4): 1851. doi: 10.1116/1.590097

[27]

Cheng Q, Xu S, Ostrikov K K. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas[J]. Nanotechnology, 2009, 20(21): 215606. doi: 10.1088/0957-4484/20/21/215606

[28]

Ali A M. Optical properties of nanocrystalline silicon films deposited by plasma-enhanced chemical vapor deposition[J]. Opt Mater, 2007, 30(2): 238. doi: 10.1016/j.optmat.2006.11.042

[29]

Hegedus S S. Current–voltage analysis of a-Si and a-SiGe solar cells including voltage-dependent photocurrent collection[J]. Prog Photovoltaics Res Appl, 1997, 5(3): 151. doi: 10.1002/(ISSN)1099-159X

[30]

Matsuda A, Takai M, Nishimoto T. Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate[J]. Sol Energy Mater Sol Cells, 2003, 78(1–4): 3. doi: 10.1016/S0927-0248(02)00431-2

[31]

Gangyi X, Tianmin W. Electrical characterization of N-type nanocrystalline silicon on p-type crystalline silicon (nc-Si:H/c-Si) heterojunctions[J]. Semicond Sci Technol, 2000, 15(6): 613. doi: 10.1088/0268-1242/15/6/322

[32]

Fang L, Baik S J, Lim K S. Tungsten oxide as a buffer layer inserted at the SnO2/p-a-SiC interface of pin-type amorphous silicon based solar cells[J]. Appl Phys Lett, 2010, 96(19): 106.

[33]

Belfar A, Aït-Kaci H. Effect of incorporating p-type hydrogenated nanocrystalline silicon buffer layer on amorphous silicon n–i–p solar cell performances[J]. Thin Solid Films, 2012, 525(25): 167.

[34]

Chatterjee P. A computer analysis of the effect of a wide-band-gap emitter layer on the performance of a-Si:H-based heterojunction solar cells[J]. J Appl Phys, 1996, 79(9): 7339. doi: 10.1063/1.361450

[35]

Hamma S, Roca i C P. Determination of the mobility gap of microcrystalline silicon and of the band discontinuities at the amorphous/microcrystalline silicon interface using in situ Kelvin probe technique[J]. Appl Phys Lett, 1999, 74(21): 3218. doi: 10.1063/1.124110

[36]

Arch J K, Rubinelli F A, Hou J. Computer analysis of the role of p-layer quality, thickness, transport mechanisms, and contact barrier height in the performance of hydrogenated amorphous silicon p–i–n solar cells[J]. J Appl Phys, 1991, 69(10): 7057. doi: 10.1063/1.347645

[37]

Cleef M W M V, Schropp R E I, Rubinelli F A. Significance of tunneling in p+ amorphous silicon carbide n crystalline silicon heterojunction solar cells[J]. Appl Phys Lett, 1998, 73(18): 2609. doi: 10.1063/1.122521

[38]

Liu S, Zeng X, Peng W. Improvement of amorphous silicon n–i–p solar cells by incorporating double-layer hydrogenated nanocrystalline silicon structure[J]. J Non-Cryst Solids, 2011, 357(1): 121. doi: 10.1016/j.jnoncrysol.2010.10.001

[1]

Chen Yongsheng, Yang Shi'e, Wang Jianhua, Lu Jingxiao, Gao Xiaoyong, Gu Jinhua, Zheng Wen, Zhao Shangli. Deposition of p-Type Microcrystalline Silicon Film and Its Application in Microcrystalline Silicon Solar Cells. J. Semicond., 2008, 29(11): 2130.

[2]

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen. An InGaAs graded buffer layer in solar cells. J. Semicond., 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

[3]

Zhang Qunfang, Zhu Meifang, Liu Fengzhen, Zhou Yuqin. High-Efficiency n-nc-Si:H/p-c-Si Heterojunction Solar Cells. J. Semicond., 2007, 28(1): 96.

[4]

Sun Fuhe, Zhang Xiaodan, Zhao Ying, Wang Shifeng, Han Xiaoyan, Li Guijun, Wei Changchun, Sun Jian, Hou Guofu, Zhang Dekun, Geng Xinhua, Xiong Shaozhen. Doped-Chamber Deposition of Intrinsic Microcrystalline Silicon Thin Films and Its Application in Solar Cells. J. Semicond., 2008, 29(5): 855.

[5]

Kang Luo, Yulin Sun, Liyu Zhou, Fang Wang, Fang Wu. Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer. J. Semicond., 2017, 38(8): 084006. doi: 10.1088/1674-4926/38/8/084006

[6]

Utsa Das, Partha P. Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis. J. Semicond., 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

[7]

Liping Qiao, Changchun Chai, Yintang Yang, Xinhai Yu, Chunlei Shi. Strain effects on band structure of wurtzite ZnO: a GGA + U study. J. Semicond., 2014, 35(7): 073004. doi: 10.1088/1674-4926/35/7/073004

[8]

Xuefen Cai, Peng Zhang, Su-Huai Wei. Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study. J. Semicond., 2019, 40(9): 092101. doi: 10.1088/1674-4926/40/9/092101

[9]

Li Chen, Xinliang Chen, Yiming Liu, Ying Zhao, Xiaodan Zhang. Research on ZnO/Si heterojunction solar cells. J. Semicond., 2017, 38(5): 054005. doi: 10.1088/1674-4926/38/5/054005

[10]

Chen Xinliang, Xue Junming, Sun Jian, Zhao Ying, Geng Xinhua. Growth of Textured ZnO Thin Films and Their Front Electrodes for Application in Solar Cells. J. Semicond., 2007, 28(7): 1072.

[11]

Liu Junpeng, Qu Shengchun, Zeng Xiangbo, Xu Ying, Chen Yonghai, Wang Zhijie, Zhou Huiying, Wang Zhanguo. Hybrid Organic/Inorganic Bulk Heteroj unction Solar Cells. J. Semicond., 2007, 28(S1): 364.

[12]

A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001

[13]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[14]

Lou Chaogang, Yan Ting, Sun Qiang, Xu Jun, Zhang Xiaobing, Lei Wei. External Quantum Efficiency of Quantum Well Solar Cells. J. Semicond., 2008, 29(11): 2088.

[15]

Xing Zhao, Jia Rui, Ding Wuchang, Meng Yanlong, Jin Zhi, Liu Xinyu. Improving poor fill factors for solar cells via light-induced plating. J. Semicond., 2012, 33(9): 094008. doi: 10.1088/1674-4926/33/9/094008

[16]

Tang Yehua, Zhou Chunlan, Wang Wenjing, Zhou Su, Zhao Yan, Zhao Lei, Li Hailing, Yan Baojun, Chen Jingwei, Fei Jianming, Cao Hongbin. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process. J. Semicond., 2012, 33(6): 064007. doi: 10.1088/1674-4926/33/6/064007

[17]

Muhammad Nawaz, Ashfaq Ahmad. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells. J. Semicond., 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001

[18]

He Weiyu, Sun Yun, Qiao Zaixiang, Ao Jianping, Wang Xinglei, Li Changjian. J-V Characteristics of Cu(In1-xGax)Se2 Thin Film Solar Cells. J. Semicond., 2007, 28(12): 1941.

[19]

Du Yongchao, Xu Shouyan, Liu Feng. Solar Cells on MCZ(Ge) Silicon Substrates. J. Semicond., 2006, 27(S1): 328.

[20]

Guo Hengqun, Lin Shangxin, Wang Qiming. Photoluminescence and Application of Nonlinear Optical Property of nc-Si-SiO2 Films. J. Semicond., 2006, 27(2): 345.

Search

Advanced Search >>

GET CITATION

S W Zhang, X B Zeng. Influence of band gap of p-type hydrogenated nanocrystalline silicon layer on the short-circuit current density in thin-film silicon solar cells[J]. J. Semicond., 2017, 38(11): 114007. doi: 10.1088/1674-4926/38/11/114007.

Export: BibTex EndNote

Article Metrics

Article views: 2125 Times PDF downloads: 24 Times Cited by: 0 Times

History

Manuscript received: 03 March 2017 Manuscript revised: 04 May 2017 Online: Uncorrected proof: 30 October 2017 Accepted Manuscript: 13 November 2017 Published: 01 November 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误